手机版
您的当前位置: 恒微文秘网 > 教案设计 > 2023有理数教案(集锦11篇)【完整版】

2023有理数教案(集锦11篇)【完整版】

来源:教案设计 时间:2023-03-22 00:30:02

下面是小编为大家整理的2023有理数教案(集锦11篇)【完整版】,供大家参考。

2023有理数教案(集锦11篇)【完整版】

小编为你精心整理了11篇《有理数教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《有理数教案》相关的范文。

篇1:有理数教案

[教学目标]

1。正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2。了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3。体验分类是数学上的常用的处理问题的方法。

[教学重点与难点]

重点:正确理解有理数的概念。

难点:正确理解分类的标准和按照定的标准进行分类。

[教学设计]

[设计说明]

一。知识回顾和理解

通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?。(3名学生板书)

[问题1]:我们将这三为同学所写的数做一下分类。

(如果不全,可以补充)。

[问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?

二。明确概念 探究分类

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数

[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?

三。练一练 熟能生巧

1。任意写出三个数,标出每个数的所属类型,同桌互相验证。

2。把下列各数填入它所属于的集合的圈内:

15,— ,—5, , ,0。1,—5。32,—80,123,2。333。

正整数集合 负整数集合

正分数集合 负分数集合

每名学生都参照前一名学生所写的",尽量写不同类型的,最后有下面同学补充。

在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决。

教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出。

在练习2中,首先要解释集合的含义。

练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)

[小结]

到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同。

[作业]

必做题:教科书第18页习题1。2:第1题。

作业2。把下列给数填在相应的大括号里:

—4,0。001,0,—1。7,15, 。

正数集合{ …},负数集合{ …},

正整数集合{ …},分数集合{ …}

[备选题]

1。下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

+7,—5, , ,79,0,0。67, ,+5。1

2。0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

3。图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分。你能说出这个重叠部分表示什么数的集合吗?

正数集合 整数集合

这里可以提到无限不循环小数的问题。并特殊指明我们以前所见到的数中,只有π是一个特殊数,它不是有理数。但3。14是有理数。

作业2意在使学生熟悉集合的另一种表示形式。

利用此题明确自然数的范围。0是自然数。这点可以在前面的教学中出现。

3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数。

篇2:有理数优秀教案

【教学目标】

1、理解有理数加法的实际意义;

2、会作简单的加法计算;

3、感受到原来用减法算的问题现在也可以用加法算、

【对话探索设计】

〖探索1〗

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨

(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨

(3)某仓库第一天运进300吨化肥,第二天又运进―200吨化肥,两天一共运进多少吨

(4)把第(3)题的算式列为300+(―200),有道理吗

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨

〖探索2〗

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么

假设原点为运动起点,用下面的数轴检验你的答案、

在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数、若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球

〖小游戏〗

(请一位同学到黑板前)前进5步,又前进―3步,那么两次运动后总的结果是什么若是后退―1步,又后退3步呢

〖补充作业〗

1、分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(1)温度由下降;(2)仓库原有化肥200t,又运进―120t;

(3)标准重量是,超过标准重量;(4)第一天盈利―300元,第二天盈利100元、

2、借助数轴用加法计算:

(1)前进,又前进,那么两次运动后总的结果是什么

(2)上午8时的气温是,下午5时的气温比上午8时下降,下午5时的气温是多少

3、某潜水员先潜入水下,他的位置记为、然后又上升,这时他处在什么位置

篇3:有理数优秀教案

【目标】:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生数学的兴趣。

【重点难点】:

正数和负数概念

【导学指导】:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗有没有比0小的数如果有,那叫做什么数

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示、

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂小练】:

1、P3第一题到第四题(直接做在课本上)。

2、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,―4万元表示________________。

3、已知下列各数: , ,3、14,+3065,0,―239;

则正数有_____________________;负数有____________________。

4、下列结论中正确的是 ( )

A、0既是正数,又是负数 B、O是最小的正数

C、0是最大的负数 D、0既不是正数,也不是负数

5、给出下列各数:―3,0,+5, ,+3、1, ,2004,+2010;

其中是负数的有 ( )

A、2个 B、3个 C、4个 D、5个

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1、零下15℃,表示为_________,比O℃低4℃的温度是_________。

2、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为―5米,其中最高处为_______地,最低处为_______地、

3、甲比乙大―3岁表示的意义是______________________。

4、如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

篇4:有理数优秀教案

【教学目标】

1、进一步理解有理数加法的实际意义;

2、经历探索有理数加法法则的过程,理解有理数加法法则;

3、感受数学模型的思想;

4、养成认真计算的习惯。

【对话探索设计】

〖探索1

1、第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2、第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3、一个物体作左右方向的运动,规定向右为正、如果物体先向左运动5m,再向左运动3m, 那么两次运动后总的结果是什么?

假设原点为运动起点,用数轴检验你的答案、

〖法则理解

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________。

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加、例如(―3)+(―5) = ―(3+5) = ―8、答案―8之所以取―号,是因为______________,8是由_____的绝对值和______的绝对值相______而得、

〖探索2

1、第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2、第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3、正数和负数相加,结果是正数还是负数?

〖法则理解

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________

例如(+6)+(―2) = +(6―2) = +4、答案+4之所以取+号,是因为两个加数(+6与―2)中________的绝对值较大;答案+4的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到。

又例,计算(―8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大、然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______、计算的过程可以写成(―8)+(+3) = ―(8―3) = ―5

〖议一议

有人说,正数和负数相加时,实质就是把加法运算转化为小学的减法运算、他说的对不对?

〖练习

1、第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

2、如果物体先向右运动5米,再向右运动―8米,那么两次运动后总的结果是什么?

3、检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

―3.5,+1.2,―2.7

这3包洗衣粉的重量一共超过标准重量多少?

4、仿照(―8)+(+3) =―(8―3) = ―5的格式解题:

(1)(―3)+(+8)=

(2)―5+(+4)=

(3)(―100)+(+30)=

(4)(―100)+(+109)=

〖法则理解

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____

例如(+3)+(―3) = ______,(―108)+(+108) = ______

篇5:初一数学有理数教案

知识与技能:1、使学生了解数是为了满足生产和生活的需要而产生、发展起来的;

2、会列举出周围具有相反意义的量,并用正负数来表示;会判断一个数是正数还是负数.培养学生的观察、想象、归纳与概括的能力。

过程与方法:3、探索负数概念的形成过程,使学生建立正数与负数的数感.

情感态度价值观:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

篇6:初一数学有理数教案

一.新课引入:

1.我们已经学过那些数?它们是怎样产生和发展起来的?

我们知道,为了表示物体的个体或事物的顺序,产生了数1,2,3……;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生、发展起来的.

2.让学生说出自己搜集到的生活中有关用负数表示的量.

3.在日常生活中,常会遇到下面的一些量,能用学过的数表示吗?

例1 汽车向东行驶3千米和向西行驶2千米.

例2 温度是零上10℃和零下5℃.

例3 收入500元和支出237元.

例4 水位升高1.2米和下降0.7米.

例5 买进100辆自行车和卖出20辆自行车.

二.新课讲解:

1.相反意义的量

学生分组讨论:上面这些例子中出现的各对量,有什么共同特点?

这里出现的每一对量,虽然有着不同的具体内容,但有着一个共同特点:它们都是具有相反意义的量.向东和向西、零上和零下、收入和支出、升高和下降、买进和买出都具有相反的意义.

让学生再举出几个日常生活中的具有相反意义的量.

2.正数与负数

只用原来所学过的数很难区分具有相反意义的量.例如,零上5℃用5表示,那么零下5℃再用同一个数5来表示就不够了.

在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可以把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作“负”)号来表示.就拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用-5℃来表示.

在例1中,如果规定向东为正,那么向西为负.汽车向东行驶3千米记作3千米,向西行驶2千米记作-2千米.

在例3中,如果规定收入为正,收入500元计作500元,那么支出237元应记作-237元.

在例4中,如果水位升高1.2米记作1.2米,那么下降0.7米计作-0.7米.

为了表示具有相反意义的量,上面我们引进了-5、-2、-237、-0.7,象这样的数是一种新数,叫做负数( negative number).过去学过的那些数(零除外),如10、3、500、1.2等,叫做正数(positive number).正数前面有时也可以放上一个“+”(读作“正”)号,如5可以写成+5,+5和5是一样的.

注意:零既不是正数,也不是负数.

例6 任意写出5个正数与6个负数,并分别把它们填入相应的大括号里:

正数集合:{ …},负数集合:{ …}.

例7 “一个数,如果不是正数,必定就是负数.”这句话对不对?为什么?

例8 A地海拔高度是70m,B地海拔高度是30m,C地海拔高度是-10m,D 地海拔高度是-30m.哪个地方最高?哪个地方最低?最高的地方比最低的地方高多少?

分析 根据题意,海拔高度是高于海平面为正,低于海平面的为负,所以-10m是低于海平面10米,-30m是低于海平面30米.画出示意图即可求解.

解 由图知,A地最高,D地最低.

所以,A地与D地的高度差为70+30=100(m).

所以,最高的地方比最低的地方高100米.

通过师生交流,引导学生概括出如下结论:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数. 0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.

1.举出几个具有相反意义的量,并用正数或负数来表示.

2.在中国地形图上,珠穆朗玛峰和吐鲁番盆地处都标有表明它们高度的数(单位:米),如图所示,这个数通常称为海拔高度,它是相对于海平面来说的.请说出图中所示的数8848和-155表示的实际意义.海平面的高度用什么数表示?

3.把下列各数分别填在相应的大括号里(数与数之间用逗号分开)

正数集合:{ … } 负数集合:{ … }

三、课堂小结:

用正数和负数可以简明地表示两种具有相反意义的量。小学里所学的除0以外的数,即大于0的数叫做正数;在正数前面加上“-”号的数,叫做负数。要注意零既不是正数也不是负数。

四、作业:

P5习题1.1 7、8

五、教学后记:

篇7:初中数学有理数教案

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据法则熟练进行运算。难点是法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计示例

(第一课时)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.

2.通过运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用法则进行加法运算.

难点:法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;|3|与|-3|;|-3|与0;

-2与|+1|;-|+4|与|-3|.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.

(三)进行新课 (板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),……同号两数相加

(-4)+(-5)=-( ),…取相同的符号

4+5=9……把绝对值相加

∴ (-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

(3)

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

例如(-8)+5……绝对值不相等的异号两数相加

8>5

(-8)+5=-( )……取绝对值较大的加数符号

8-5=3 ……用较大的绝对值减去较小的绝对值

∴(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)

解:

解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

探究活动

题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;

(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;

(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;

(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?

参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:

(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

又如,在11,10,8,7,5这五个数的前面添加负号,得

12-11-10-9-8-7+6-5+4+3+2+1=-4,

我们就有多种调整的方法,如将-8与+6变号,有

12-11-10+9+8-7-6-5+4+3+2+1=0. ③

经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但

1+2+3+4+5+6+7+8+9+10+11+12=78

因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为

为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).

同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.

此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.

掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.

篇8:初中数学有理数教案

一、素质教育目标

(一)知识教学点

1.理解有理数乘方的意义.

2.掌握有理数乘方的运算.

(二)能力训练点

1.培养学生观察、分析、比较、归纳、概括的能力.

2.渗透转化思想.

(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

(四)美育渗透点

把记成,显示了乘方符号的简洁美.

二、学法引导

1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

2.学生学法:探索的性质→练习巩固

三、重点、难点、疑点及解决办法

1.重点:运算.

2.难点:运算的符号法则.

3.疑点:①乘方和幂的区别.

②与的区别.

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片.

六、师生互动活动设计

教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

七、教学步骤

(一)创设情境,导入 新课

师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

生:可以记作,读作的四次方.

师:呢?

生:可以记作,读作的五次方.

师:(为正整数)呢?

生:可以记作,读作的次方.

师:很好!把个相乘,记作,既简单又明确.

【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.

师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

(二)探索新知,讲授新课

1.求个相同因数的积的运算,叫做乘方.

乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

巩固练习(出示投影1)

(1)在中,底数是__________,指数是___________,读作__________或读作___________;

(2)在中,-2是__________,4是__________,读作__________或读作__________;

(3)在中,底数是_________,指数是__________,读作__________;

(4)5,底数是___________,指数是_____________.

【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

生:到目前为止,已经学习过五种运算,它们是:

运算:加、减、乘、除、乘方;

运算结果:和、差、积、商、幂;

教师对学生的回答给予评价并鼓励.

【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

2.练习:(出示投影2)

计算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

师:请同学思考一个问题,任何一个数的偶次幂是什么数?

生:任何一个数的偶次幂是非负数.

师:你能把上述结论用数学符号表示吗?

生:(1)当时,(为正整数);

(2)当

(3)当时,(为正整数);

(4)(为正整数);

(为正整数);

(为正整数,为有理数).

【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

初中数学有理数教案

篇9:七年级数学有理数教案

第1章 有理数

第1课时

1.1 正数和负数(1)

教学目标:

1、知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。

2、过程与方法:教法主要采用启发式教学,学法引导学生自主探索去观察、交流、归纳.

3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透(中华人民共和国产品质量法)

教学重点:

了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。 教学难点:

学习负数的必要性,能准确地举出具有相反意义的量的典型例子。

教学准备:彩色粉笔

教学过程:

一、复习引入:

1.你看过电视或听过广播中的天气预报吗?记录温度时所示的气温25ºC,10ºC,零下10ºC,零下30ºC。为书写方便,将测量气温写成25,10,―10,―30。

2.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?

在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,„;为了表示“没有”,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。

二、讲授新课:

1.相反意义的量:

在日常生活中,常会遇到这样一些量(事情):

例1:汽车向东行驶3千米和向西行驶2千米。例2:温度是零上10℃和零下5℃。

例3:收入500元和支出237元。 例4:水位升高1.2米和下降0.7米。 ①试着让学生考虑这些例子中出现的每一对量,有什么共同特点?(具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义)

②你能举出几对日常生活中具有相反意义的量吗?

2.正数和负数:

①能用我们已经学的来很好的表示这些相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?

拿温度为例,通常规定零上为正,于是零下为负,零上10℃就用10℃表示,零下5℃则用―5℃来表示。

②怎样表示具有相反意义的量呢?能否从天气预报出现的标记中,得到一些启发呢?例1中,我们如果规定向东为正,那么向西为负。汽车向东行驶3千米记作3千米,向西行驶2千米应记作―2千米。

后面的例子让学生来说(注意词的"表达)。

在以上的讨论中,出现了哪些新数?

为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―0.7等数。像这样的一些新数,叫做负数。过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数。正数前面有时也可放一个“+”(读作“正”),如5可以写成+5。

注意:零既不是正数,也不是负数。

篇10:七年级数学有理数教案

1.1 正数和负数(2)

教学目标:

1、知识与技能:在了解正负数的概念的基础上,使学生灵活运用正负数的来表示相反意义量

2、过程与方法:通过用正负数的来表示相反意义量的教学,培养学生观察、比较和概括的思维能力.教法主要采用启发式教学

3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,学会交流

教学重点:

深化对正负数概念的理解

教学难点:

正确理解和表示向指定方向变化的量

教学准备:彩色粉笔

教学过程:

一、复习引入:

上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,

就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数²

二、讲解新课

把0以外的数分为正数和负数,它们表示具有相反意义的量。随着对正数、负数意义认识的加深,正数和负数在实践中得到了广泛的应用。在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0米),通常用正数表示高于海平面的某地的海拔高

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)

三、课堂练习课本 P4练习1,2,3,4

四、课时小结

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示. 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业 教科书P5: 2、4

板书设计:

篇11:七年级数学有理数教案

.2.1 有理数

教学目标:

1、知识与技能:使学生理解整数、分数、有理数的概念。并会判断一个给定的数是整数或分数或有理数,会对有理数进行分类,培养学生观察、比较和概括的思维能力

2、过程与方法:从直观认识到理性认识、从而建立有理数概念。通过学习有理数概念,体会对应的思想,数分类的思想教法,主要采用启发式教学。

3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神, 教学重点:

了解有理数包括哪些数。

教学难点:

要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

教学准备:彩色粉笔

教学过程:

一、复习引入:

1.填空:

①正常水位为0m,水位高于正常水位0.2m 记作 ,低于正常水位0.3m记作 。 ②乒乓球比标准重量重0.039g记作 ,比标准重量轻0.019g记作 ,标准重量记作 。

2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作 ;如果―7m表示物体向西运动7m,那么6m表明物体怎样运动?(1+0.2;–0.3;+0.039;–0.019;2.–8m;向东运动6m)

二、讲授新课:

1.数的扩充:

数1,2,3,4,„叫做正整数;―1,―2,―3,―4,„叫做负整数;正整数、负整数和零统称为整数;数2,1,84,+5.6,„叫做正分数;―7,―6,―3.5,„叫做负分数;34597

正分数和负分数统称为分数;整数和分数统称为有理数。

2.思考并回答下列问题:

①“0”是整数吗?是正数吗?是有理数吗?

②“―2”是整数吗?是正数吗?是有理数吗?

③自然数就是整数吗?是正数吗?是有理数吗?

要求学生区分“正”与“整”;小数可化为分数。

3.有理数的分类

不同的分类标准可以将有理数进行不同的分类:

①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:

正整数正整数正有理数整数0正分数负整数有理数有理数0负有理数负整数分数正分数

负分数 负分数

②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如上分类表:(注:①“0”也是自然数。②“0”的特殊性。)

4、把一些数放在一起,就组成一个数的集合,简称数集(set of number)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。

恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有

Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1

Top