数学七年级教案第1.1生活中的立体图形〖教学过程:〗一、看一看:(情境创设)教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图下面是小编为大家整理的数学七年级教案19篇,供大家参考。
1.1 生活中的立体图形
〖教学过程:〗
一、看一看:(情境创设)
教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。
设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”
(2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”
教师(问):卡通A、B身体各部分是什么图形?
通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。
教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。
(出示课题):生活中的立体图形
音乐响起,屏幕播放录象。
二、议一议(课堂讨论)
问题1:你发现录象中的.这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?
组织学生围绕以上问题四人一小组讨论,说明自己的观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。
问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?
电脑演示:(1)球体 (2)圆柱 (3)圆锥
并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。
电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),
问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?
诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?
(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。
通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。
三、练一练(评价)
遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:
1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。
尽量让每个学生都发言,注意培养学生的语言表达能力。
教学内容:
义务教育课程标准实验教科书青岛版小学数学二年级下册第七单元信息窗三。
教材简析:
本节课的学习是建立在“求比一个数多(少)几的数是多少”的应用题以及初步掌握万以内数的加减混合运算的基础之上的。教材呈现的是小女孩参观姥爷的花圃的情境。蓝天、小鸟、蜻蜓、树木、花草、老人和小朋友构成了一幅美丽的生活画卷。通过图中提供的各种花卉的棵数和已卖出花卉的棵数,启发学生提出问题,引导学生综合应用万以内数的连加、连减和加减混合运算知识解决实际问题。
教学目标:
引导学生在解决实际问题的过程中,进一步体会运算顺序的合理性,理清解题思路。
培养学生在具体情境中提出运用混合运算解决的问题,并能结合具体情境表述解决问题的过程,学会有条理地思考问题,提高解决问题的能力。
感受混合运算在解决生活中实际问题的作用,培养学习兴趣。
教学过程:
第一课时
一、创设情境,激趣引入。
谈话:同学们,这两天我们和小丽一起来到了姥姥家,给姥姥、姥爷带来了礼物,还参观了养鸭场。今天,我们再和小丽一起去姥爷的花圃看一看,好吗?
(课件显示不出现数学信息的画面)
谈话:姥姥家的花圃漂亮吗?你都看到了什么?
[设计意图]通过谈话和情景图的引入,以学生非常熟悉的“去姥姥家”的系列活动(买礼物—参观养鸭场—参观花圃)为素材,构成“情景串”,既使学生感受到浓浓的亲情,又易于激发学生主动探索数学知识的兴趣和热爱生活的情感。
二、观察思考,合作交流。
1、出示已卖出花卉的信息,提出问题。
一串红:上午卖出80棵
下午卖出110棵
山菊花:上午卖出35棵
月 季:下午卖出78棵
(画面上显示出已卖出花卉的信息 )
谈话:很多人都来买姥爷种的花,姥爷细心地把每天的卖花情况做好记录,这是其中一天的记录。仔细观察,你都发现了什么?能提出什么问题?
学生可能提出:
(1)一串红一共卖出多少棵?
(2)这三种花一共卖出多少棵?
(上述问题可直接让学生口头列式解决)
谈话:看到这些卖花的信息,你还想了解点什么?
学生可能回答:
(1)这些花原来各有多少棵?
(2)卖出后,各剩下多少棵?(师随着回答 板书:各剩下多少棵?)
(学生能谈出想法即可,如果谈不出教师也不必勉强。)
谈话:小丽也想了解还有哪些信息,我们和她一起去找找看好吗?
[设计意图]先出示关于卖花的信息,目的是让学生简单的做一分析之后,主动地想到“原有的-卖出的=剩下的”这一数量关系,自然而然地教给学生一种分析应用题的方法,对信息的选择也多了几分目的性和自主性。
2、出示其他信息,再分析提出问题。
郁金香
300棵
月季
比郁金香多60棵
一串红
450棵
山菊花
比一串红少180棵
(画面上补充显示其他信息 )
谈话:现在你又发现了什么?从中了解到什么?
引导学生分析整合信息,提出问题。
学生可能发现:
(1)一串红有450棵,山菊花比一串红少180棵,郁金香有300棵,月季比郁金香多60棵。
(2)根据一串红有450棵,山菊花比一串红少180棵,可以知道山菊花原来有多少棵。算式:450-180
(3)根据郁金香有300棵,月季比郁金香多60棵,可以求出月季原来有多少棵,算式:300+60
谈话:我们从图中了解到这么多的信息,你能提出有关两步计算的问题吗?(学生也可能自主的提出以下问题)
(1) 一串红剩下多少棵?
(2) 山菊花剩下多少棵?
(3) 月季花剩下多少棵?
(4) 原来山菊花和一串红一共有多少棵?
(5) 郁金香和月季花原来一共有多少棵?
教师随着学生的回答板书问题。
[设计意图]将信息分层次地出现,有助于学生对信息进行有条理地分析、整合、梳理。这样既符合儿童的认知规律,又照顾到个体差异。知识的呈现过程层次清楚,能组织学生积极地投入到获取知识的思维过程中来。
3、自主探究,解决问题
谈话:大家提出这么多问题,真棒!下面我们先来解决“一串红、山菊花、月季花各剩下多少棵?”好吗?
(1)解决问题:“一串红剩下多少棵?”
谈话:要求出“一串红剩下多少棵?”都要了解哪些信息,你能自己想办法解决吗?
引导学生回到情境图中找到合适的信息,并列式解决问题。
全班交流:
①用一串红原有450棵减去上午卖出80棵,再减去下午卖出110棵,就可以求出剩下多少棵,算式:450-80-110
②先求出一共卖出多少棵,再用原来的-卖出的=剩下的,算式:450-(80+110)
交流时讲清思路,鼓励学生列综合算式解答,倡导算法多样化。
(2)解决“山菊花剩下多少棵?”
谈话:要知道“山菊花剩下多少棵”,需要了解哪些信息?
① 一串红450棵,山菊花比一串红少180棵。
② 山菊花上午卖出35棵。
谈话:你想怎样解决,在小组内交流一下。
学生小组内交流解题思路,并列式计算。
全班交流,学生可能出现二种分析思路:
①从问题入手。要求剩下多少棵山菊花,先求出原来有多少棵山菊花,再减去卖掉的,算式:450-180-35
②从条件入手。根据一串红有450棵,山菊花比一串红少180棵,可以求出山菊花有多少棵,再减去卖掉的,就可以求出剩下的,算式:450-180-35
(学生能用自己的语言讲清解题思路即可,教师随着学生的回答板书:450-180-35,提问先算什么,求出什么?后算什么,又求出什么?)
(3)解决“月季剩下多少棵?”
谈话:大家能自己完整地找出信息,独立解决这个问题吗?
学生独立分析思路,并列式计算。教师巡视,指名板演,全班交流时由板演的同学当小老师,讲述解题思路以及计算方法。
(4)让学生口头解决剩下的其他几个问题。(重点让学生说清解题思路)
[设计意图]本信息窗呈现了丰富的信息,学生通过分析整合可能提出大大小小许多不同的问题。考虑到本节课的教学重点,决定从分析“卖花”信息入手,着重解决“三种花各剩下多少棵?”这一问题。其中“一串红剩下多少棵?”对于学生来说较容易接受,直接放手让学生自己解决;
而“山菊花剩下多少棵?”相比较而言较难理解一些,因此解决时教师引导学生找信息,小组合作分析解题思路;
至于“月季还剩下多少棵?”由前面的学习做基础,解决这一问题也是“水到渠成”的事了。因此这一环节充分体现了“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这种以人为本的教育理念。
三、巩固深化,应用拓展。
1、自主练习第1题。
以“开小火车”的形式让学生进行口算,增强团队意识。
2、自主练习第2题(如果时间充分,可再补充一些混合运算式题)
以“争夺小红旗”的形式组织学生独立计算,小组订正。比一比哪个小组得到的小红旗多。
[设计意图]根据低年级学生活泼好动、乐于比赛的特点,将枯燥无味的式题以比赛的形式出现,既调动了学生计算的兴趣,又能提高计算的正确率和速度,同时倡导小组合作交流、创设和谐愉悦的课堂氛围。
四、课堂总结。
谈话:这节课大家学得高兴吗?你有哪些收获?(板书课题:混合运算)
教学目标:
1、理解5的乘法口诀,能运用口诀进行乘法计算。
2、经历归纳5的乘法口诀的过程,知道口诀的来历,进一步理解乘法的含义。
3、体会数学与生活的密切联系。
教学重点:
理解5的乘法口诀,会用口诀进行计算。
难点:口诀的运用。
准备:手掌图
教学过程:
一、编口诀。
1、连加计算手指数:
(1)我们人人都有一双巧手,每只手上都有几个手指?(板书:5 1个5)
(2)两只手有几个手指?就是几个5?(板书:10 2个5)
(3)再多一只手呢?就是几个5?4只手呢?5只手呢?(板书:15 3个5;
20 4个5;
25 5个5)
小结:刚才我们用连加的方法,很快算出了几个5是多少。上两节课我们学了乘法,你会用乘法来计算吗?
2、用乘法计算手指数:
(1)1个5,用乘法怎样计算?2个5呢?2个5得几,你是怎样知道的?(指连加结果)3个5呢?4个5,5个5呢?(生汇报,师板书)
(2)大家有没有发现这些算式的得数有什么奇特的地方?(用彩笔标出得数的个位)
小结:根据刚刚连加的结果,我们又很快得出了乘法算式的结果。那是不是我们以后每次计算乘法前都要先做一次连加才能知道结果呢?(对呀,这样多麻烦啊!那有没有一些好的办法呢?或:你知道古人想到了什么办法吗?)
(3)揭示课题:乘法口诀。
3、编5的乘法口诀
(1)古人是怎样编口诀的呢?请看,先编1个5,就先写“一五”,1个5是5,就在后面写上“得五”,口诀就是“一五得五”。齐读。
“一五得五”表示什么意思?这句口诀其实是由两个乘法算式总结出来的,所以就可以用来计算这两个乘法算式,也就是一五得五对应着:1×5=5 5×1=5。
(2)根据2×5=10和5×2=10,你会编出口诀吗?板书:二五一十(得数满10了,为了简便就不写“得”字。)
谁知道“二五一十”表示什么意思?它可以计算哪两个乘法算式?
(3)你能根据剩下的算式编出乘法口诀吗?打开数学书p52,自己试一试。
(4)教师巡视指导,集体订正。(指名板演)提醒注意:五五二十五,不要写成了“五五二五”。
(5)小朋友真不错!5句口诀都编完了。齐读一遍。
仔细观察一下这5句口诀,你发现了什么规律?(口诀前半句表示几个5,后半句是得数。相邻两句口诀之间相差5。)
再齐读口诀。
二、记口诀。
谈话:刚才我们学古人编出了5的乘法口诀,那你准备怎样记住这5句口诀呢?
1、学生自己读读背背。
2、(你觉得哪句最容易记,哪句最难记?)老师有一个疑问,5句口诀中我4句都记熟了,但“三五”是多少我总是忘记(把“十五”擦去),怎么办呀?
3、对口令:
(1)大家都记熟了吗?敢不敢跟邹老师对口令?(2)同位对口令。
4、补充口诀:
一五xx
三五xx
五五xx
四五xx
二五xx
5、齐背口诀。
三、用口诀。
谈话:乘法口诀我们背熟了,可以用来做什么呢?
1、利用板书:
(1)把某些乘法算式的得数擦去,让学生说说得几?怎样想?2×5 5×1 3×5 5×5 4×5(2×5=10,想:二五一十)
(2)“四五二十”除了可以计算4×5,还计算哪个乘法算式?“三五十五”可以计算哪两个乘法算式?“一五得五”呢?
2、边做边说口诀。
5×3= 1×5= 5×2= 5×4= 5×1= 5×5= 4×5= 2×5=
3、看图列式:=?元
4、列式解答:
(1)每头大象运2根木头,5头大象一共运了多少根木头?
(2)每只小兔拔5个萝卜。
3只小兔拔xx个。
4只小兔拔xx个。
5只小兔拔xx个。
四、总结:这节课你有什么收获?你学得开心吗?出示古诗:锄禾日当午,汗滴禾下土,谁知盘中餐,粒粒皆辛苦。
“猜一猜老师会提什么数学问题?”引导学生提出。
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.
教学目标:
1、通过回顾与整理,使学生形成知识网络,加深对三角形、平行四边形和梯形的特征的理解,能运用这些知识解决实际问题。
2、培养学生根据实际情况,灵活运用所学的知识解决问题的能力。
3、培养学生的探究意识和能力,培养学生进行自我反思和自我评价的能力。
教学重点:
整理知识,灵活运用三角形、平行四边形和梯形的特征来解决问题。
教学难点:
培养学生回顾、整理知识的能力,以及探索与实践的能力。
教学准备:
课件
教学过程:
一、知识系统整理
提问:这个单元,你学到了哪些知识?
回顾与整理
1、梳理知识。
小组讨论:
(1)三角形的边和角各有哪些特征?
(2)平行四边形和梯形各有什么特征?
(3)本单元学习的图形中,哪些是轴对称图形?
以小组为单位,结合上面的三个问题,将本单元学习的这些图形知识进行系统整理。
2、交流汇报。
(1)教师结合学生的汇报完成下面的板书:
特征
三角形任意两边长度的和大于第三边;
内角和等于180。平行四边形两组对边平行;
两组对边相等。
梯形只有一组对边平行;
互相平行的一组对边长度不相等。
三角形包括:锐角三角形、直角三角形和钝角三角形。
等腰三角形:两腰相等,两底角相等。
等边三角形:三条边相等,三个角都是60。
轴对称图形有:等腰三角形、等边三角形、等腰梯形。
二、查漏补缺训练
1、完成教材第93页“练习与应用”第1题。
出示题目后,先让学生说一说每个图形的名称,再独立画高。
交流时,让学生说一说画高的方法,以及三角形、平行四边形和梯形的高各有多少条。
2、完成教材第93页“练习与应用”第2题。
这道题是根据锐角三角形、直角三角形和钝角三角形的特点进行分类。
先让学生独立进行分类,再让学生说一说分类的方法。通过交流使学生明确三角形按角的特点进行分类时,只要判断三个内角中最大的内角是什么角,这个三角形就是什么三角形。
3、完成教材第94页“练习与应用”第3题。
这道题是综合运用三角形的内角和的知识来解决问题。第(2)小题是求直角三角形的一个内角,只要用90减去另一个内角就可以了;
第(3)小题是求等腰三角形的一个底角,用(180-顶角)÷2来计算。
4、完成教材第94页“练习与应用”第4、5题。
这两道题都要运用三角形任意两边长度的和大于第三边的知识来解决。
5、完成教材第94页“练习与应用”第6题。
这道题是运用轴对称的知识进行画图。
三、综合运用提升
1、完成教材第94页“探索与实践”第7题。
(1)让学生思考怎样将一个平行四边形分成两个图形后平移成一个长方形。
(2)动手在平行四边形纸片上画一画,剪一剪,移一移。
(3)交流讨论。
2、完成教材第95页“探索与实践”第8题。
(1)拼一拼。
让学生用课前准备的两个梯形纸片拼一个平行四边形。
(2)想一想。
观察拼成的平行四边形,想一想:平行四边形的底与梯形的上底、下底有什么关系?拼成的平行四边形的高与梯形的高呢?
四、反思总结
1、课件出示教材“评价与反思”部分的评价量表。
组织学生结合各自的情况进行填写。
全班交流。
2、通过本课的学习,你有哪些收获?还有哪些疑问?
五、课堂作业
教材分析
教材要求学生从生活中的例子来探索加法运算特点,通过观察和思考分析找出它的规律,要示学生初步了解这些规律,用字母表示这些规律,并能够理解及运用。教材在教学安排上由浅入深,加法运算律的学习是探讨乘法运算律的基础,因此这部分知识占据着重要的篇幅。在此基础上,教材引出了乘法运算律的知识,这两部分知识紧密联系在一起。教学中让学生通过循序渐进的学习,在培养分析归纳能力的同时,培养学生“由特殊到一般,再由一般到特殊”的认识事物的方法和独立自主、主动探索的学习意识。
学情分析
1、紧密联系学生的生活实际,引导学生在已有经验的基础上发现并归纳出运算律。
2、重视运算律的发现过程。引入实际事例,引导学生主动地探究规律、发现规律。在练习过程中提高合情推理和初步演绎推理的能力。
3、在具体的情况下逐步学会合理灵活地应用运算律,增强应用意识。
教学目标
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点和难点
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。
教学过程
一、创设情景,初步感知
1、课前谈话。
2、情景引入。(出示课件)
二、教学加法交换律
1、师:要求“跳绳的有多少人?”可以怎样列式呢?
生口答列式
师:你发现了什么?那可以用什么符号连接呢?(=)
(板书:28+17=17+28)
2、师:求“女生有多少人?”你会列式吗?
(生答,师板书:17+23=23+17)
3、师:你能照样子说出几个这们的等式吗?
4、师:(1)请你仔细观察上面的等式,你发现等号两边的算式什么变了?什么没变?
(2)像这样的等式写得完吗?那你能不能想办法用一个等式来表示所有的等式呢?
5、交流:我们以前用过这样的规律吗?想想在哪儿用过?(加法验算)
三、教学加法结合律
1、师:刚才同学们不仅解决了2个问题,而且还学会了加法交换律。那你会解决第三个问题吗?请你用一个综合算式来表示。
(1)学生尝试练习
(2)交流。师:你是怎样列式的?(28+17)+23
你先算的是什么?(跳绳的人)
追问:还有不同的方法吗?28+(17+23)
你先算的是什么?(女生人数)
师:(28+17)+23算出来的是什么?28+(17+23)呢?你发现了什么?可以用什么符号连接?(=)
板书:28+(17+23)=(28+17)+23
2、师:如果让你来算,你喜欢哪种方法?为什么?
3、师:请你算一算,下面的O里能填上等号吗?
4、师:请你仔细观察这两个等式,等号的左右两边有何共同点和不同点?
5、师:(1)三个数相加,是不是都存在这样的规律呢?
(2)你能照样子写出几个这样的等式吗?
(3)写得完吗?你会像加法交换律一样,用含有字母的式子来表示吗?
板书:(a+b)+c=a+(b+c)
6小结。(板书:加法结合律)
四、巩固练习
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的`基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=10
2x+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=10
2x+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x xy
y
上表中哪对x、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
一:教材分析:(说教材)
1:教材所处的地位和作用:
本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣
以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:
(1)知识目标:
(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)
通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:
通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的`方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:
根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:
(1)抓不准相等关系;
(2)找出相等关系后不会列方程;
(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。
5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。
三:教学策略:(说教法)
如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:
1:“读(看)——议——讲”结合法
2:图表分析法
3:教学过程中坚持启发式教学的原则
教学的理论依据是:
1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。
2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表
示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X”“—15%X”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。
【教学目标】
1、通过探索与实践,使学生加深对分数四则混合运算解决实际问题的理解,促进相关技能的形成,发展数学思维和实践能力,激发进一步学习分数,应用分数的兴趣。
2、通过评价与反思,使学生对自己在学习过程中的表现和运用知识理解知识解决实际问题的能力作出客观的评价。
【教学重点】
运用所学知识解决有关分数计算的实际问题。
【教学难点】
对所学知识进行实事求是的自我评价。
【教学准备】
多媒体课件。
【教学课时】
一课时。
【教学设计】
一、探索与实践
1、引入谈话。
师:今天我们继续应用分数的混合运算来解决生活中的实际问题。
板书课题:整理与练习(2)。
2、 完成“探索与实践”第5题。
(1)理解第(1)小题题意。
师追问:你准备怎样解决这个问题?(先画线段图)
(2)学生演示画法。
指名在实物投影上画出线段图。
(3)集体评价,列式计算。
(4)学生根据计算结果,画出长方形。
师追问:你准备怎样画?
(5)理解第(2)小题题意。
(6)怎样求现在长方形的面积?
学生独立计算,并求出现在长方形面积是原来的几分之几。
3、完成“探索与实践”第6题。
(1)理解题意。
师追问:你准备画长宽是多少的长方形,小组讨论确定长方形。
(2)尝试练习画出现在长方形的长和宽及面积。
(3)算出现在长方形的面积是原来的几分之几?
(4)小组汇报交流。
比较上面两题的计算结果,你有什么发现?学生互相说,集体汇报。
[设计意图:让学生在探索与实践中加深对分数四则混合运算解决实际问题的理解。]
二、评价与反思
1、理解每一条评价指标的意思。
2、学生逐条自我评价。
3、交流汇报。
让学生说说自己在这方面做得怎么样?有哪些成功的经验,还有哪些不足?
[设计意图:让学生在评价与反思中能自我检讨,逐步提高能力。]
三、全课总结
今天这节课你有什么收获?你有什么感想?
[设计意图:让学生在总结中收获知识,提高学习数学的兴趣。]
四、板书设计
【教学目标】:
1.掌握坐标变化与图形平移的关系;
能利用点的平移规律将平面图形进行平移;
会根据图形上点的坐标的变化,来判定图形的移动过程。
2.发展学生的形象思维能力,和数形结合的意识。
3.用坐标表示平移体现了平面直角坐标系在数学中的应用。
4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。
重点:掌握坐标变化与图形平移的关系。
难点:利用坐标变化与图形平移的关系解决实际问题。
【教学过程】
一、引言
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。
二、新
展示问题:教材第75页图.
(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位
长度呢?
(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(
,));
将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).
教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;
反过来,从图形上的点的坐
标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点
,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点
,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题.
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向
左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC
向下平移5个单位长度得到.
课本P77思考题:由学生动手画图并解答.
归纳:
三、练习:教材第78页练习;
习题7.2中第1、2、4题.
四、作业布置第78页第3题.
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:
直线平行的条件的应用.
学习难点:
选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题)(第2题)
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是()
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则()
A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:
如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)
1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)
课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体
1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:
1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?
2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点 是理解法则。
有理数除法有两种法则。
法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。
法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的"理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.
一、教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:
A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
教学目标
1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;
2.了解倒数概念,会求给定有理数的倒数;
3.通过将除法运算转化为乘法运算,培养学生的转化的思想;
通过运算,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节教学的重点是熟练进行运算,教学难点 是理解法则。
1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;
二计算绝对值。如:按法则1计算:原式;
按法则2计算:原式。
2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;
在有整除的情况下,应用第二个法则比较方便,如;
在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。
(二)知识结构
(三)教法建议
1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。
2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。
3.理解倒数的概念
(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。
(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。
(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;
另外0没有倒数,而0的相反数是0。
4.关于倒数的求法要注意:
(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.
(2)正数的倒数是正数,负数的倒数仍是负数.
(3)负倒数的定义:乘积是-1的两个数互为负倒数.
教学设计示例
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行运算.
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想.
2.培养学生运用数学思想指导思维活动的能力.
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
3.疑点:对零不能作除数与零没有倒数的理解.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔.
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.
【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.
(二)探索新知,讲授新课
1.倒数.
(出示投影1)
4×( )=1;
×( )=1;
0.5×( )=1;
0×( )=1;
-4×( )=1;
×( )=1.
学生活动:口答以上题目.
【教法说明】在有理数乘法的基础础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数.(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.
(出示投影2)
求下列各数的倒数:
(1);
(2);
(3);
(4);
(5)-5;
(6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;
求小数的倒数必须先化成分数再求.
2.
计算:8÷(-4).
计算:8×()=? (-2)
∴8÷(-4)=8×().
再尝试:-16÷(-2)=? -16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论.(一个学生回答)
师强调后板书:
[板书]
【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
(三)尝试反馈,巩固练习
师在黑板上出示例题.
计算(1)(-36)÷9, (2)()÷().
学生尝试做此题目.
(出示投影3)
1.计算:
(1)(-18)÷6;
(2)(-63)÷(-7);
(3)(-36)÷6;
(4)1÷(-9);
(5)0÷(-8);
(6)16÷(-3).
2.计算:
(1)()÷();
(2)(-6.5)÷0.13;
(3)()÷();
(4)÷(-1).
学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).
【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答.
[板书]
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何不等于0的数,都得0.
【教法说明】通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.
(四)变式训练,培养能力
回顾例1 计算:(1)(-36)÷9;
(2)()÷().
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.
(2)题仍用除以一个数等于乘以这个数的倒数较简单.
提出问题:-36:9=?;
:()=?它们都属于除法运算吗?
学生活动:口答出答案.
(出示投影4)
例2 化简下列分数
(1);
(2);
(3)或3:(-36)
(4);
(5).
例3 计算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.
【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(-6)中.
根据方法①()÷(-6)=×()=.
根据方法②()÷(-6)=(24+)×=4+=.
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.
(五)归纳小结
师:今天我们学习了及倒数的概念,回答问题:
1.的倒数是__________________();
2.;
3.若、同号,则;
若、异号,则;
若,时,则;
学生活动:分组讨论,三个学生口答.
【教学目标】
1、知识与能力
(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2、过程与方法
通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3、情感、态度与价值观
通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】
轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】
轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高。
【教学用具】多媒体课件、直尺、剪刀和彩纸等
【教学过程】
一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形
我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物。
问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片)。
(1)这些图形有什么共同的特征?
对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?
(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?
(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?
二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念
师生互动操作设计:
教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等。
1、经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念。
归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴。
2、出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?
学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合。
在学生交流的基础上,引导学生对轴对称的概念进行归纳。
把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:
轴对称是说两个图形的位置关系。而轴对称图形是说一个具有特殊形状的图形。
轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;
如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;
反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形。
三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念
1、△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C的对称点,线段AA′、BB′、CC′和直线MN有什么关系?
学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有 AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段。
2、鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”
3、进而引导学生进行归纳:
轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”。
类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”。
四、师生合作,应用提高,拓展创新
1、出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等
先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?
学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴。并将学生交流的结果展示在黑板上,师生交流心得和方法。
对称轴是任何一对对应点所连线段的垂直平分线。为下一课学习垂直平分线的画法打下基础。
2、利用以前认识过的一些简单的几何图形,如三角形,正方形,矩形,平行四边形,梯形等,以这些图形的任意一条边所在直线做为对称轴, 找出对称点,自己设计和创作轴对图形或是成轴对称的两个图,并将学生的成果展示在黑板上。
五、 归纳小结
1、这节课你学到了什么?
(1)轴对称、轴对称图形的概念;
;
(2)轴对称和轴对称图形的区别和联系
(3)线段垂直平分线的概念;
(4)轴对称的性质。
2、你还学到了什么?还想学习什么?
六、布置作业、下课
作业:收集和整理生活中有关轴对称的图片,课余时间进行交流,发现生活中对称的美。
【教学板书】
12.1轴对称
1、轴对称图形
(1)沿直线对折(2)两侧能够完全重合
2、轴对称
3、垂直平分线
(1)过线段中点(2)垂直于这条线段
4、轴对称的性质
对称轴是任何一对对应点所连线段的垂直平分线
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答
(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;
(3)︱0︱=。(幻灯片)
思考:你能从中发现什么规律引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。
因此,在数轴上你有何发现生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此这些数的绝对值的大小如何(可利用P19/6,8为素材)
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、幻灯片
2、师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1.小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究:1.你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;
她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
一、教学目标
㈠知识与技能
1.理解掌握有理数的减法法则
2.会进行有理数的减法运算
㈡过程与方法
1.通过把减法运算转化为加法运算,向学生渗透转化思想
2.通过有理数减法法则的推导,发展学生的逻辑思维能力
3.通过有理数的减法运算,培养学生的运算能力
㈢情感态度与价值感
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想
二、学法引导
1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2.学生学法:探索新知归纳结论练习巩固
三、重、难点与关键
1.重点:有理数减法法则和运算
2.难点:有理数减法法则的推导
3.关键:正确完成减法到加法的转化
四、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
五、教学过程
㈠创设情境,引入新课
1、计算(口答)
⑴;
⑵-3+(-7)
⑶-10+3;
⑷10+(-3)
2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?
引导学生观察:
生:3℃比-3℃高6℃
师:能不能列出算式计算呢?
生:3-(-3)
师:如何计算呢?
总结:这就是我们今天要学的内容.(引入新课,板书课题)
㈡探索新知,讲授新课
1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?
生:6+(-3)=3
师:很好!由此可知3-(-3)=6
师:计算:3+(+3)得多少呢?
生:3+(+3)=6
师:让学生观察两式结果,由此得到
3-(-3)=3+(+3)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?
生:可以
师:是如何转化的呢?
生:减去一个负数(-3),等于加上它的相反数(+3)
2、换几个数再试一试,计算下列各式:
⑴0-(-3)=0+(+3)=
⑵-5-(-3)=-5+(+3)=
⑶9-8=9+(-8)=
引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?
归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。
(投影显示或板书)有理数减法法则:
减去一个数,等于加上这个数的相反数。
用式子表示为:a-b=a+(-b)
强调注意:减法在运算时有2个要素发生了变化
1、减加
2、数相反数
3、例题讲解:(出示投影)
例1、计算下列各题
⑴9-(-5)⑵(-3)-1
扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1