人教版数学七年级上册教案第1篇课题有理数教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,体验分类是数学上下面是小编为大家整理的人教版数学七年级上册教案11篇,供大家参考。
课题有理数
教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和有相同的类型吗?5可以表示5个人,而可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业1,必做题:教科书第18页习题第1题
2,教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
课题数轴
教学目标1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动)设计理念
设置情境
引入课题教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和处分别有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作)创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的三要素:原点、正方向、单位长度体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗?学生游戏体验,对数轴概念的理解
寻找规律
归纳结论问题3:
1,你能举出一些在现实生活中用直线表示数的实际例子吗?
2,如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3,哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4,每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结请学生总结:
1,数轴的三个要素;
2,数轴的作以及数与点的转化方法。
本课作业1,必做题:教科书第18页习题第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2,教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3,注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
一、三维目标。
(一)知识与技能。
能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
(二)过程与方法。
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
(三)情感态度与价值观。
培养学生主动探究、合作交流的意识,严谨治学的学习态度。
二、教学重、难点与关键。
1、重点:去括号法则,准确应用法则将整式化简。
2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。
3、关键:准确理解去括号法则。
三、教具准备。
投影仪。
四、教学过程,课堂引入。
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
五、新授。
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 ①
冻土地段与非冻土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60
学习目标:
理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。
学习重点:
多项式乘法法则及其应用。
学习难点:
理解运算法则及其探索过程。
一、课前训练:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索练习:
(1)如图1大长方形,其面积用四个小长方形面积
表示为:
;
(2)大长方形的长为 ,宽为 ,要
计算其面积就是 ,其中包含的
运算为 。
由上面的问题可发现:( )( )=
多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的 以另一个多项式的每一项,再把所得的积 。
三.运用法则规范解题。
四.巩固练习:
3.计算:① ,
4.计算:
五.提高拓展练习:
5.若 求m,n的值.
6.已知 的结果中不含 项和 项,求m,n的值.
7.计算(a+b+c)(c+d+e),你有什么发现?
六.晚间训练:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)观察:4×6=24
14×16=224
24×26=624
34×36=1224
你发现其中的规律吗?你能用代数式表示这一规律吗?
(2)利用(1)中的规律计算124×126。
4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。
(1)设AP= ,求两个正方形的面积之和S;
(2)当AP分别 时,比较S的大小。
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:
①系数一各项系数的最大公约数;
②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:
①提取公因式后各因式应该是最简形式,即分解到“底”;
②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
一、内容和内容解析
1、内容:同底数幂的乘法。
2、内容解析
同底数幂的乘法是幂的一种运算,在整式乘法中具有基础地位。在整式的乘法中,多项式的乘法要转化为单项式的乘法,单项式的乘法要转化为幂的运算,而幂的运算以同底数幂的乘法为基础.
同底数幂的乘法将同底数幂的乘法运算转化为指数的加法运算,其中底数a可以是具体的数、单项式、多项式、分式乃至任何代数式。同底数幂的乘法是类比数的乘方来学习的,首先在具体例子的基础上抽象出同底数幂的乘法的性质,进而通过推理加以推导,这一过程蕴含数式通性、从具体到抽象的思想方法。
基于以上分析,确定本节课的教学重点:同底数幂的乘法的运算性质。
二、目标和目标解析
1、目标
(1)理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算。
(2)体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用。
2、目标解析
达成目标(1)的标志是:学生能根据乘方的意义推导出同底数幂乘法的性质,会用符号语言和文字语言表述这一性质,会用性质进行同
底数幂的乘法运算。
达成目标(2)的标志学生发现和推导同底数幂的乘法的运算性质,会用符号语言,文字语言表述这一性质,能认识到具体例子在发现结论的过程中所起的作用,能体会到数式通性在推到结论的过程中的重要作用.
三、教学问题诊断分析
在前面的学习中,学生已经学习了用字母表示数以及整式的加减运算,但是用字母表示幂以及幂的运算还是初次接触。幂的运算抽象程度较高,不易理解,特别对于am+n的指数的理解,因为它不仅抽象程度较高,而且运算结果反映在指数上,学生第一次接触,也很难理解.教学时,应引导学生回顾乘方的意义,从数式通性的角度理解字母表示的幂的意义,进而明确同底数幂乘法的运算性质.
本节课的教学难点是:同底数幂的运算性质的理解与推导.
四、教学过程设计
1、创设情境,提出问题
问题1: 一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算?
回顾与思考:什么叫乘方? an 表示的意义是什么?其中a、n、an分别叫什么?
师生活动:教师提出复习问题,学生主动思考并回答问题,并尝试用学过的知识解决问题.
设计意图:从实际问题导入,让学生动手试一试,主动探索,在自己
的实践中感受学习同底数幂的乘法的必要性,并通过有步骤、有依据的计算,为探索同底数幂的乘法的运算性质做好知识和方法的铺垫,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习。
2、探索新知
问题2根据乘方的意义填空:
25×22=( )×( )=_____________=2( ) a3×a2=( )×( )=______________=a( ) 5m×5n=( )×( )=______________=5()
(1) 探一探 观察几个式子左右两边底数、指数有什么变化?
(2) 说一说 根据上面式子的计算结果,你能发现有什么规律吗?小
组交流一下想法。
(3) 猜一猜 am×an=?(m、n是正整数)
师生活动:学生独立思考,然后小组交流思考结果.
设计意图:从引例到“推一推”、“说一说”、“猜一猜”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步又有层次地进行概括抽象的过程。在这一过程中,要留给学生探索与交流的空间,让学生在自己的实践中获得运算法则。
问题3 你能将你的猜想推导出来吗?
am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意义
= a·a·﹒﹒﹒·a —— 乘法结合律
=am+n ——乘方的意义
师生活动:教师提出问题,学生独立思考并写出推导过程,教师用多媒体展示推导过程。
设计意图:通过推导得出同底数幂的乘法的运算性质,让学生认识并体验数式通性,体会由具体到抽象的数学思想方法.
追问1:
通过上面的探索与推导,你能用文字语言概括同底数幂乘
法的运算性质吗?
师生活动:教师提出问题学生尝试用文字语言概括同底数幂乘法的运
算性质:同底数幂相乘,底数不变,指数相加。
3、课堂练习巩固同底数幂乘法的运算性质
练习1:计算题(结果写成幂的形式)
1)103×104 =
2)(-7)3·(-7)8 =
3)a·a3 =
4)(a-b)2·(a-b) =
5)a·a3·a5 =
师生活动:学生独立完成,小组合作交流答案。最后教师总结:在同底数幂的乘法运算中,底数可以是数、字母或式子。
设计意图:让学生通过练习,领会同底数幂乘法的运算性质。并体会底数的变化,可以是数、字母或式子。
问题4:a·a3·a5 =?同底数幂的乘法运算性质对于三个、四个······多个同底数幂相乘是否也适用呢?
师生活动:教师提出问题,学生思考回答问题,并将这一性质推广到多个同底数幂相乘的情况。
设计意图:通过利用文字语言概括性质以及对性质进行推广的过程,促进学生对公式结构特征的深层理解。
练习2判断题(若错误,请在题后写出正确答案)
1)a5 · a5= 2a5( )
2)b5 + b5 = b10( )
3)x5 ·x5 = x25( )
4)y5 · y5 = 2y10( )
5)m · m3 = m3( )
6)n + n3 = n4( )
师生活动:学生思考判断,领略“法官断案”的快乐。
设计意图:让学生熟练地运用同底数幂乘法的运算性质,领略同底数幂乘法的魅力。
4、课堂小结
教师与学生一起回顾本节课所讲内容以及注意事项
设计意图:
5、布置作业
必做:课本 P105页 第9题
选做:课本 P106页 第13题
学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:一元一次不等式组的解法
学习难点:一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式,并把解集在数轴上表示出来。
【预习】
1、认真阅读教材34-35页内容
2、____________ _叫做一元一次不等式组。
______ _______叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来
①
二、探究活动
【例题分析】
例1. (问题1)题中的“买5筒钱不够,买4筒钱又多”的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3.解不等式组
【小结】
不等式组解集口诀
“同大取大,同小取小,大小小大中间找,大大小小解不了”
一元一次不等式组解集四种类型如下表:
不等式组(a
(1)x>ax>b
x>b同大取大
(2)x< p="">
x
ax
无解大大小小解不了
【课堂检测】
1、不等式组的解集是( )
A. B. C. D.无解
2、不等式组的解集为( )
A.-1<="" c.x<-1="" b.-1
3、不等式组的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x>2x≥-1的解集是_ __;
(2)不等式组x<-1x<-2的解集;
(3)不等式组x<4x>1的解集是__ __;
(4)不等式组x>5x<-4解集是___ ___。
2、解下列不等式组,并在数轴上表示出来
四、应用与拓展
1、若不等式组无解,则m的取值范围是____ _____.
五、数学日记
课题:正数和负数
教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考.
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是,身高米,体重千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严
密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴
趣,所以创设如下的问题情境,以尽量贴近学生的实际.
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解.
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.
这阶段主要是让学生学会正数和负数的表示.
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
问题4:请同学们举出用正数和负数表示的例子.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.
进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.
分析题目中的数量关系,用式子表示数量关系.
(设计者:
)
一、创设情境 明确目标
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.
(1)2 h行驶的路程是多少?3 h呢?t h呢?
(2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?
(3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?
二、自主学习 指向目标
自学教材第54至55页,完成下列问题:
1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:
(1)列车2 h行驶的路程为__200__km.
(2)列车3 h行驶的路程为__300__km.
(3)列车t h行驶的路程为__100t__km.
2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.
三、合作探究 达成目标
用字母表示数
活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;
(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的"产量;
(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;
(4)用式子表示数n的相反数.
【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.
【小组讨论】用字母表示数有什么意义?
【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.
【针对训练】见“学生用书”.
用字母表示简单的数量关系
活动二:阅读教科书例2中的四个问题,思考:
顺水行驶时,船的速度=________+________;
逆水行驶时,船的速度=________-________.
解答过程见教材第55页例2的解答过程.
【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.
【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?
【反思小结】用含有字母的式子表示数量关系时,关键是找准题目中的数量关系.
注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;
2.字母和数字相乘时,省略乘号,并把数字放到字母前;
3.出现除式时,用分数的形式表示;
4.结果含加减运算的,需要带单位时,式子要用“()”;
5.系数是带分数时,带分数要化成假分数.
【针对训练】见“学生用书”.
四、总结梳理 内化目标
1.用字母表示数的意义.
2.用含有字母的式子表示数量关系的意义.
3.用含有字母的式子表示数量关系时要注意的问题.
实际问题―→用字母表示数―→用字母表示数量关系
《2.1整式》同步练习含答案
1. 其中长方形的长为a,宽为b.
(1)阴影部分的面积是多少?
(2)你能判断它是单项式或多项式吗?它的次数是多少?
《2.1整式》课后练习含答案
知识要点
1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:
(1)不含加减运算;
(2)可以含乘、除、乘方运算,但分母中不能含有字母.
2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.
3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
4.整式:单项和多项式统称整式.
一、知识与技能
能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。
二、过程与方法
经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。
三、情感态度与价值观
培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。
教学重、难点与关键
1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。
2.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号。
3.关键:明确问题中的数量关系,熟练掌握去括号规律。
教具准备:投影仪。
四、教学过程 引入新课
1.多项式中具有什么特点的项可以合并,怎样合并?
2.如何去括号,它的依据是什么?
五、新授
例1.(1)求多项式2x-3y与5x+4y的和。
(2)求多项式8a-7b与4a-5b的差。
例2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?
教学目标:
知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
能力目标:培养学生快速运算的能力.
情感目标:培养学生耐心细致的学习习惯.
教学重点与难点:多项式除以单项式的法则是本节的重难点.
教学过程:
一、复习提问
1.计算并回答问题:
(1)4a3b4c÷2a2b2c;
(2)(a2b2c)÷3ab2
(3)以上的计算是什么运算?能否叙述这种运算法则?
2.计算并回答问题:
(1)3x(x2x+1);
(2)4a(a2a+2)
3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.
说明:希望学生能写出
2×3=6,(2的3倍是6)
3×2=6,(3的2倍是6)
6÷2=3,(6是2的3倍)
6÷3=2.(6是3的2倍)
然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.
二、新课引入
对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.
1.法则的推导.
引例:(8x312x2+4x)÷4x=(?)
分析:
利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x312x2+4x
然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.
解:(8x312x2+4x)÷4x
=8x3÷4x12x2÷4x+4x÷4x
=2x23x+4x.
思考题:(8x312x2+4x)÷(4x)=?
教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结1,相反数的定义
2,互为相反数的数在数轴上表示的点的特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1