下面是小编为大家整理的高一物理知识点总结人教版(十五篇)(精选文档),供大家参考。
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。写总结的时候需要注意什么呢?有哪些格式需要注意呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。
从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。
自由落体运动是最典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。
地球表面附近的上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。
只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。
g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(1)vt=gt
(2)h=1/2gt^2
(3)vt^2=2gh
这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。
对自由落体最先研究的是古希腊的科学家亚里士多德,他提出:物体下落的快慢是由物体本身的重量决定的,物体越重,下落得越快;反之,则下落得越慢。
亚里士多德,前384年4月23日-前322年3月7日,古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。
他的著作包含许多学科,包括了物理学、形而上学、诗歌(包括戏剧)、生物学、动物学、逻辑学、政治、政府、以及_学。和柏拉图、苏格拉底(柏拉图的老师)一起被誉为西方哲学的奠基者。亚里士多德的著作是西方哲学的第一个广泛系统,包含道德、美学、逻辑和科学、政治和玄学。
伽利略是意大利天文学家,也是世界物理学家。他于1564年诞生在意大利北部的比萨市,1642年1月8日去世,终年78岁。他毕生致力于科学事业,不仅为我们留下了时钟、望远镜和众多的科学专著,而且还为破除宗教迷信、科学偏见作出了杰出的贡献。
伽利略在1638年写的《两种新科学的对话》一书中指出:根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体的下落速度要小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论。亚里士多德的理论陷入了自相矛盾的境地。伽利略由此推断重物体不会比轻物体下落得快。伽利略的假设推导法,对物理思维方法起到了非常重要的作用。
伽利略曾在的比萨斜塔做了的自由落体试验,让两个体积相同,质量不同的球从塔顶同时下落,结果两球同时落地,以实践驳倒了亚里士多德的结论。但是后来经过历史的严格考证,伽利略并没有在比萨斜塔做实验,人们却还是把比萨斜塔当作对伽利略的纪念碑。
线速度v=s/t=2πr/t2.角速度ω=φ/t=2π/t=2πf
向心加速度a=v^2/r=ω^2r=(2π/t)^2r4.向心力f心=mv^2/r=mω^2_=m(2π/t)^2_
周期与频率t=1/f6.角速度与线速度的关系v=ωr
角速度与转速的关系ω=2πn(此处频率与转速意义相同)
主要物理量及单位:弧长(s):米(m)角度(φ):弧度(rad)频率(f):赫(hz)
周期(t):秒(s)转速(n):r/s半径(r):米(m)线速度(v):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。
(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
1.电容定义:电容器所带的电荷量q与电容器两极板间的电势u的比值,叫做电容器的电容
c=q/u,式中q指每一个极板带电量的绝对值
①电容是反映电容器本身容纳电荷本领大小的物理量,跟电容器是否带电无关。
②电容的单位:在国际单位制中,电容的单位是法拉,简称法,符号是f。
常用单位有微法(μf),皮法(pf)1μf=10-6f,1pf=10-12f
2.平行板电容器的电容c:跟介电常数成正比,跟正对面积s成正比,跟极板间的距离d成反比。
是电介质的介电常数,k是静电力常量;空气的介电常数最小。
3.电容器始终接在电源上,电压不变;电容器充电后断开电源,带电量不变。
初速度为零的匀变速直线运动以下推论也成立
(1) 设t为单位时间,则有
●瞬时速度与运动时间成正比,
●位移与运动时间的平方成正比
●连续相等的时间内的位移之比 (2)设s为单位位移,则有
●瞬时速度与位移的平方根成正比,
●运动时间与位移的平方根成正比,
●通过连续相等的位移所需的时间之比。
1、万有引力定律:引力常量g=6.67×n?m2/kg2
2、适用条件:可作质点的两个物体间的相互作用;
若是两个均匀的球体,r应是两球心间距。(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3、万有引力定律的应用:(中心天体质量m,天体半径r,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=gg=g≈9.8m/s2
高空物体的重力加速度:mg=gg=g<9.8m/s2
4、第一宇宙速度————在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/r或由==7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、通过万有引力定律和向心力公式计算环绕速度
8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值
a=(vt—v0)/t
2.a不由△v、t决定,而是由f、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
用图象描述直线运动
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)
3.图象中两图线的交点表示两物体在这一时刻相遇。
匀变速
直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:
①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:g=mg
说明:
①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2)重力的方向:竖直向下(即垂直于水平面)
说明:
①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:
①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:
①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
高一物理知识点总结梳理5篇分享
第一节探究形变与弹力的关系
认识形变
1.物体形状回体积发生变化简称形变。
2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3.弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1.物体具有恢复原状的性质称为弹性。
2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3.在弹性限度内,弹簧弹力f的"大小与弹簧的伸长或缩短量x成正比,即胡克定律。
f=kx
4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
1.功
(1)功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,我们就说这个力对物体做了功.力和在力的方向上发生位移,是做功的两个不可缺少的因素。
(2)功的计算式:力对物体所做的功的大小,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积:w=fscosα。
(3)功的单位:在国际单位制中,功的单位是焦耳,简称焦,符号是j.1j就是1n的力使物体在力的方向上发生lm位移所做的功。
2.功的计算
⑴恒力的功:根据公式w=fscosα,当00≤a<900时,cosα>0,w>0,表示力对物体做正功;当α=900时,cosα=0,w=0,表示力的方向与位移的方向垂直,力不做功;当900<α<1800时,cosα<0,w<0,表示力对物体做负功,或者说物体克服力做了功。
(2)合外力的功:等于各个力对物体做功的代数和,即:w合=w1+w2+w3+……
(3)用动能定理w=δek或功能关系求功.功是能量转化的量度.做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化。
3.功和冲量的比较
(1)功和冲量都是过程量,功表示力在空间上的积累效果,冲量表示力在时间上的积累效果。
(2)功是标量,其正、负表示是动力对物体做功还是物体克服阻力做功.冲量是矢量,其正、负号表示方向,计算冲量时要先规定正方向。
(3)做功的多少由力的大小、位移的大小及力和位移的夹角三个因素决定.冲量的大小只由力的大小和时间两个因素决定.力作用在物体上一段时间,力的冲量不为零,但力对物体做的功可能为零。
4.一对作用力和反作用力做功的特点
⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
曲线运动·万有引力
曲线运动
质点的运动轨迹是曲线的运动
1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向
2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;
3.曲线运动的特点
曲线运动一定是变速运动;
曲线运动的加速度(合外力)与其速度方向不在同一条直线上;
4.力的作用
力的方向与运动方向一致时,力改变速度的大小;
力的方向与运动方向垂直时,力改变速度的方向;
力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;
运动的合成与分解
1.判断和运动的方法:物体实际所作的运动是合运动
2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;
3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;
曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比r,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
高一物理知识点2
动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:f合=ma或a=f合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:f=-f{负号表示方向相反,f、f各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡f合=0,推广{正交分解法、三力汇交原理}
5.超重:fn>g,失重:fn
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册p67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
力的图示
1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。
3.力的示意图:突出方向,不定量。
力的等效/替代
1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3.实验:平行四边形定则:p58
第四节力的合成与分解
力的平行四边形定则
1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2.一切矢量的运算都遵循平行四边形定则。
合力的计算
1.方法:公式法,图解法(平行四边形/多边形/△)
2.三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
3.设f为f1、f2的合力,θ为f1、f2的夹角,则:
f=√f12+f22+2f1f2cosθtanθ=f2sinθ/(f1+f2cosθ)
当两分力垂直时,f=f12+f22,当两分力大小相等时,f=2f1cos(θ/2)
4.1)|f1—f2|≤f≤|f1+f2|
2)随f1、f2夹角的增大,合力f逐渐减小。
3)当两个分力同向时θ=0,合力:f=f1+f2
4)当两个分力反向时θ=180°,合力最小:f=|f1—f2|
5)当两个分力垂直时θ=90°,f2=f12+f22
分力的计算
1.分解原则:力的实际效果/解题方便(正交分解)
2.受力分析顺序:g→n→f→电磁力
1、电场线:用来形象描述电场的假想曲线,是由法拉第引入的。
理解:①、起始于正电荷(无穷远处),终止于负电荷(无穷远处),不是闭合曲线,不相交。
②、电场线上一点的切线方向为该点场强方向。
③、电场线的疏密程度反映了场强的大小。
④、匀强电场的电场线是平行等距的直线。
⑤、沿电场线方向电势逐点降低,是电势最低最快的方向。
⑦、电场线并非电荷运动的轨迹。
2、等势面:电势相等的点构成的面有以下特征;
①在同一等势面上移动电荷电场力不做功。
②等势面与电场力垂直。
③电场中任何两个等势面不相交。
④电场线由高等势面指向低等势面。
⑤规定:相邻等势面间的电势差相差,所以等势面的疏密反映了场强的大小(匀强点电荷电场等势面的特点)
⑥几种等势面的性质
a、等量同种电荷连线和中线上
连线上:中点电势最小
中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。
b、等量异种电荷连线上和中线上
连线上:由正电荷到负电荷电势逐渐减小。
中线上:各点电势相等且都等于零。
3、电场力做功与电势能的关系:
①、通过电场力做功说明:电场力做正功,电势能减小。
电场力做负功,电势能增大。
②、正电荷:顺着电场线移动时,电势能减小。
逆着电场线移动时,电势能增加。
负电荷:顺着电场线移动时,电势能增加。
逆着电场线移动时,电势能减小。
③、求电荷在电场中a、b两点具有的电势能高低
将电荷由a点移到b点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在a点电势能大于在b点的电势能,反之电场力做负功,电势能增加,电荷在b点的电势能小于在b点的电势能
④、在正电荷产生的电场中正电荷在任意一点具有的电势能都为正,负电荷在任一点具有的电势能都为负。
在负电荷产生的电场中正电荷在任意一点具有的电势能都为负,负电荷在任意一点具有的电势能都为正。
一、基本概念
1、质点
2、 参考系
3、坐标系
4、时刻和时间间隔
5、路程:物体运动轨迹的长度
6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。
7、速度:
物理意义:表示物体位置变化的快慢程度。
分类平均速度:方向与位移方向相同
瞬时速度:
与速率的区别和联系速度是矢量,而速率是标量
平均速度=位移/时间,平均速率=路程/时间
瞬时速度的大小等于瞬时速率
8、加速度
物理意义:表示物体速度变化的快慢程度
定义:(即等于速度的变化率)
方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)
(1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能。
①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的。②重力势能的大小和零势能面的选取有关。③重力势能是标量,但有"+“、”-"之分。
(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关。wg=mgh.
(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值。即。
3.探究决定动能大小的因素:
①猜想:动能大小与物体质量和速度有关。
实验研究:研究对象:小钢球方法:控制变量。
·如何判断动能大小:看小钢球能推动木块做功的多少。
·如何控制速度不变:使钢球从同一高度滚下,则到达斜面底端时速度大小相同。
·如何改变钢球速度:使钢球从不同高度滚下。
③分析归纳:保持钢球质量不变时结论:运动物体质量相同时;速度越大动能越大。
保持钢球速度不变时结论:运动物体速度相同时;质量越大动能越大;
④得出结论:物体动能与质量和速度有关;速度越大动能越大,质量越大动能也越大。
扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1