曹鑫,王静静,李聪健,何卫锋,汪路路,何磊
偏压梯度TiAlN涂层对TC4钛合金振动与拉伸疲劳性能的影响与机理
曹鑫1,王静静2*,李聪健1,何卫锋3,汪路路1,何磊1
(1.中国空气动力研究与发展中心 高速空气动力研究所,四川 绵阳 621000;
2.东南大学 泰州生物医药与医疗器械研究院,江苏 泰州 225300;
3.空军工程大学 等离子体动力学重点实验室,西安 710038)
探究偏压梯度TiAlN涂层对基体疲劳性能的影响规律和疲劳损伤机理。利用磁过滤阴极真空弧技术和连续改变偏压的沉积工艺,在TC4钛合金表面沉积了偏压梯度TiAlN涂层,并采用扫描电镜、轮廓仪、纳米压痕和划痕仪表征测试了TiAlN涂层的微观结构和内应力、表面硬度、膜基结合力等基本力学性能。对TiAlN涂层试件的振动和拉伸疲劳性能分别进行了考核,通过观察试件疲劳断口形貌,探究了偏压梯度TiAlN涂层/基体的疲劳损伤机理。TiAlN涂层中Al元素含量沿深度方向一直在降低,偏压工艺成功制备出梯度结构涂层。偏压梯度TiAlN涂层的内应力为压缩状态,数值为(2.66±0.23) Gpa,显著低于对应恒压涂层(‒200 V)。偏压梯度TiAlN涂层试件平均振动强度和拉伸疲劳强度分别为370.90、377.90 MPa,前者相对于TC4基体提高了47.7%,后者几乎保持不变。TiAlN涂层内部存在残余压应力,具有一定抗裂纹萌生能力,TC4钛合金表面制备偏压梯度TiAlN涂层后,两种受载类型下的疲劳裂纹源均位于涂层与基体界面处。振动受载时,涂层中梯度结构抑制了裂纹的扩展,疲劳强度提高;
拉伸受载时,TiAlN涂层部分发生破碎,抑制裂纹萌生与促进裂纹扩展两种机制同时存在,疲劳强度几乎不变。
TiAlN涂层;
偏压梯度结构;
TC4钛合金;
疲劳性能;
损伤机理
直升机和运输机在沙漠等恶劣环境下执行任务时,大量砂尘粒子被吸入发动机内,对航空发动机压气机叶片造成严重的冲蚀损伤,大幅降低了发动机的使用寿命,影响发动机运行的安全性和可靠性[1-2]。压气机叶片表面制备抗冲蚀涂层是解决这一问题的有效手段[3],学者们开展了大量研究工作。早期研究主要集中在二元氮化物涂层,如TiN、CrN、ZrN等。Rickerby等[4]进行了不锈钢表面TiN涂层的冲蚀考核试验,验证了TiN涂层抗冲蚀性能的有效性,且在45°条件下抗冲蚀性能提升尤为显著。Cai等[5]研究了制备工艺和涂层成分对CrN基和TiN基涂层冲蚀率的影响,结果表明低冲蚀角度下,涂层3/2值越高,冲蚀率越低,高冲蚀角度下则结果相反。随着对涂层冲蚀行为研究的深入,涂层的韧性逐渐受到重视。二元涂层基础上增加合金元素,是提高涂层韧性的途径之一。Yang等[6]、邓建新等[7]研究发现,TiAlN涂层相对于TiN、CrN和CrAlN等涂层,硬度和韧性更高,抗冲蚀性能也因此提高。改进涂层结构是提高涂层韧性另一种重要途径,例如多层结构、梯度结构等。梯度结构是指在成分或功能特性上呈现连续变化的一种涂层结构[8],可进一步提升涂层的性能。Zhang等[9]提出一种连续调节衬底负偏压制备梯度结构涂层的工艺,可实现涂层自底部至表面由软变硬的连续变化。软质逐渐过渡为表面硬质。课题组前期采用该工艺成功制备出偏压梯度TiAlN抗冲蚀涂层,实现了涂层高硬度和良好韧性的结合,并验证了其优异的抗冲蚀性能[10]。
抗冲蚀涂层可提高叶片材料表面的砂尘防护性能,但航空发动机压气机叶片在运行时过程承受气流激振力,引起低阶模态共振;
同时,叶片工作时高速旋转对带来较高的离心力。因此长期服役过程叶片受到振动与拉伸两种不同形式的交变载荷。叶片材料表面制备抗冲蚀涂层后,易在交变载荷作用下与基体一同发生疲劳损伤,并对基体疲劳性能造成影响[11]。疲劳问题是目前造成零部件断裂的主要原因之一[12],研究人员针对交变载荷作用下涂层试件的疲劳性能开展了大量工作。Gryaznov[13]研究了多层TiN涂层对GTE叶片疲劳性能的影响,结果表明制备涂层后叶片的疲劳极限提高,且数据分散度降低。Berrios-Ortiz等[14]研究了采用磁控溅射在316L不锈钢表面制备ZrN涂层后的疲劳特性,结果表明涂层内部的残余压应力及较高的膜基结合强度提升了基体的疲劳强度。Peraud等[15]在钛合金表面分别制备了NiTi和SiC合金涂层,着重研究了钛合金制备涂层后疲劳断裂行为。研究发现试件的疲劳寿命与涂层特性和交变载荷的强度均相关。钛合金表面涂层的存在改变了表面层的变形机制,可阻止试件表面裂纹源的萌生,疲劳寿命显著提高。
上述研究表明涂层能够改善基体的疲劳性能,但也有较多文献指出涂层的制备不利于基体的疲劳性能。贾大炜等[16]研究了高温防护涂层对镍基合金疲劳性能及裂纹萌生与扩展的影响。涂层制备后其表面存在松散颗粒,易导致裂纹萌生并迅速扩展,降低了基体疲劳极限。Costa等[17]在Ti6Al4V钛合金表面分别制备了TiN、CrN和WC: H等涂层,涂层试件的疲劳极限相对于原始基体均有所下降。黄海鸿等[18]、熊晓晨等[19]也得出了类似的研究结果。可见,涂层制备后试件的疲劳性能很难准确预测,与涂层、基体各自性能以及界面特性、膜基结合强度等多方面因素有关。为保证压气机叶片制备抗冲蚀涂层后安全服役,亟需开展抗冲蚀涂层对基体疲劳性能影响及机理研究。目前,对于梯度结构抗冲蚀涂层对基体疲劳性能影响的研究较少,本文以偏压梯度TiAlN涂层为研究对象,针对压气机叶片工作中存在的振动、拉伸形式的交变载荷,对涂层试件进行疲劳考核,研究TiAlN涂层对钛合金基体振动与拉伸疲劳性能的影响,并结合疲劳断口损伤形貌,探究涂层/基体的疲劳损伤机理。
涂层制备基体选用航空发动机压气机叶片常用材料Ti6Al4V(TC4)钛合金,该合金为α+β相的双相结构。表1给出了室温下TC4钛合金主要力学性能参数。
表1 室温下TC4钛合金力学性能
Tab.1 Mechanical properties of TC4 alloy at room temperature
振动高周疲劳试件根据HB 5277—84相关要求进行加工,试件尺寸如图1a所示,试件圆弧短边一侧均为夹持区域。拉伸高周疲劳试件按照国家标准GB/T 3075—2008相关要求进行加工,试件尺寸如图1b所示,试件两端各18 mm长度部分为夹持区域。采用磁过滤阴极真空弧(Filtered Cathodic Vacuum Arc,FCVA)技术在试件双面均进行涂层制备,制备前将基材材料进行抛磨至表面粗糙度<0.1 μm。为了提高结合力,采用金属蒸汽真空弧(Metal Vapor Vacuum Arc,MEVVA)注入与FCVA沉积相结合的工艺沉积TiAl结合层,具体工艺步骤及参数见表2中步骤1~4。TiAl结合层沉积之后,通入氮气开始沉积TiAlN层,氮气流量从2 ml/min逐渐增加到50 ml/min(增加速率为0.2 sccm/s,共计4 min),并在50 ml/min流量速率下维持46 min,具体工艺如表2步骤5所示。沉积梯度TiAlN层期间,衬底负偏压以每分钟增加‒3 V的速率从‒50 V逐渐调节至200 V,其中电源占空比为90%,弧流为100 A。MEVVA阴极靶材为99.999%高纯Ti靶,FCVA阴极靶材为99.9% Ti0.3Al0.7合金靶。为了阻止TiAlN层的柱状晶体生长过大,在TiAlN层沉积的第34分钟停止通入氮气,并进行高能Ti/Al离子溅射(负偏压分别调至‒800、‒600、‒400 V,各维持30 s)。当停止通入氮气时,TiAlN层的柱状晶体即停止生长;
当再次通入氮气后,TiAlN层需重新成核生长,因而可阻止柱状晶的增长[20-21],同时高能离子也可进一步释放涂层的生长应力。涂层制备时,同时放入单面抛光单晶硅片(100)试件,便于涂层微观结构观察与测试使用。
图1 疲劳试件尺寸示意图
表2 偏压梯度TiAlN涂层沉积过程和工艺参数
Tab.2 Deposition process and parameters of bias-graded TiAlN coatings
对偏压梯度TiAlN涂层的微观形貌及力学性能进行测试表征。采用扫描电镜(Hitachi SU-8010)对偏压梯度TiAlN涂层的表面及截面形貌进行观察,并对截面进行EDS测试,获取涂层中Ti、Al和N元素沿深度方向上的分布规律。采用纳米压痕仪(Agilent Nano-Indenter G200)对涂层表面硬度进行测试,选择深度模式,压痕深度为200 nm。采用Stoney公式[22]计算获取TiAlN涂层的宏观平均内应力,其方程为:
式中:s、s分别为基体材料的弹性模量和泊松比,通过材料手册查得;
s为基体试件的厚度,涂层制备前直接测得;
c为涂层厚度,通过扫描电镜测得;
为涂层沉积后试件的曲率半径,通过Talysurf 5P-120轮廓仪测得。试件沉积之前的表面被认作是平面,其曲率半径的倒数为零,因而该项在方程中被略去。采用划痕测试仪(Anton Paar Revetest)对涂层与基体的结合力进行测量,测试参数为:划痕长度5 mm,加载速率98 N/min,加载速度10 mm/min,开始载荷1 N,最终载荷50 N。
针对压气机叶片工作时不同的交变载荷形式,对涂层试件分别进行振动与拉伸形式的高周疲劳性能考核,并采用逐级加载的试验方法[23]确定试件的高周疲劳强度,具体方法步骤参见文献[24]。振动疲劳性能考核在东菱ES-50-445型电磁振动试验平台上开展,试件夹持方式为单臂悬梁。试验中通过电涡流位移传感器监控疲劳过程中试件的振幅来控制应力。第一级应力载荷水平设为260 MPa,后续试件根据试验情况进行调整,步长为20 MPa,应力比为‒1,循环次数为106,加载频率为试件的一阶固有频率,通过振动试验台扫频获取。拉伸高周疲劳考核试验在电磁激振高频疲劳试验机QBG-100上开展。第一级应力载荷水平设为300 MPa,后续试件根据试验情况进行调整,步长为30 MPa,应力比为0.1,循环次数为106,加载频率根据试件自身属性进行自适应控制,其范围为90~105 Hz。TiAlN涂层疲劳试件为12个,振动和拉伸疲劳试件均为6个。采用扫描电镜对涂层试件的疲劳断口进行观察,比较不同状态试件的疲劳损伤特征,探究振动载荷及拉伸交变载荷作用下TiAlN涂层试件的疲劳损伤机理。
图2a为单晶硅片表面沉积偏压梯度TiAlN涂层的表面形貌,可以看出涂层表面致密、均匀,仅存在极少数的液滴,这与磁过滤沉积技术特点有关。涂层表面存在少量圆形的浅坑,这是由于沉积过程中偏压逐渐增大,金属离子的轰击能量与溅射效应随之增强,涂层表面部分材料被溅射下来,从而形成浅坑。图2b为在偏压梯度TiAlN涂层的横截面微观形貌。由图2b可见,涂层与基体连接良好,在涂层/基体界面处无分层和裂缝存在。涂层内部均匀紧凑,无孔洞存在,表面存在少数液滴。此外,由截面可知涂层总厚度约为3.6 μm,包括TiAl结合层、TiAlN层及TiAl溅射薄层,其中TiAl结合层的厚度约为0.57 μm,TiAl溅射薄层厚度约为70 nm,是在高能Ti/Al离子溅射过程中形成,将TiAlN层分成了上下两部分,可阻止TiAlN层柱状晶体生长过大。偏压梯度TiAlN层中存在“鱼鳞状”形貌(白色虚线之间),这是由横截面试件制样过程中的脆断导致。
图2 TiAlN涂层微观形貌
采用EDS测试偏压梯度TiAlN涂层中Ti、Al和N元素沿深度方向上的分布规律,其结果如图2b所示。偏压梯度涂层的TiAlN层中的Al元素含量一直在下降,表明梯度偏压工艺可制备出梯度结构。Al元素的下降与偏压的增加有关,这与参考文献[25]中的结果一致。Al元素与Ti元素的离化率不同,Al的离化率为50%,而Ti的离化率为80%,更多的Ti离子被吸引到负压衬底上。随着偏压的增加,衬底对离子的吸引增强,导致Al/Ti比例的下降[26]。另一方面,随着衬底偏压的增加,衬底表面溅射效应增加,与较重的Ti离子相比,Al离子反溅射效应更强,更容易被后续的高能离子从衬底表面溅射出来,导致Al元素含量降低[27]。
表3为TC4钛合金[10]和TiAlN涂层应力计算与硬度测试结果。TC4钛合金试件表面残余应力为8.23 MPa,应力水平极低。TiAlN涂层试件的内应力数值为(2.66±0.23) GPa,根据试件的弯曲变形方向[28]可知为压缩状态(表3中给出试件表面制备涂层后弯曲变形方向与应力状态关系示意图)。文献[10]中相应恒定偏压TiAlN(‒200 V)涂层的内应力数值为(3.95± 0.07) GPa,与其相比偏压梯度TiAlN涂层降低了32.66%。这是由于恒定偏压涂层在沉积期间,衬底偏压一直维持在‒200 V,沉积时产生的离子束轰击效应较强,涂层沉积时其缺陷密度累积增加,进而导致内应力增加。而偏压梯度涂层在沉积期间,衬底偏压逐渐增加,后续沉积离子的能量高于先前靶材离子,从而增加了涂层表面已吸附离子的迁移率,并同时促进了离子扩散。前序低能量下产生的缺陷易被后续高能量下形成的吸附离子在其扩散过程中而湮灭[29-30]。因此,偏压梯度涂层中的内应力显著低于恒定偏压涂层。
表3 不同试件的力学性能
Tab.3 Mechanical properties of specimens
TC4钛合金试件的表面硬度为3.95 GPa,TiAlN涂层试件的表面硬度为32.08 GPa,涂层的制备显著提高了基体的表面硬度。偏压梯度涂层沉积过程中,随着偏压的增加,沉积能量也增加,离子轰击产生的空穴易被新产生的离子填充,涂层沉积时堆积密度增加[31];
同时,涂层内应力随着偏压的增加而增强[25],两者共同作用导致涂层硬度不断提高。根据ASTM C1624-05标准,本文采用c2作为结合力评价标准。TiAlN涂层的划痕损伤形貌如图3所示,涂层的c2位置用红色箭头标出。由图3可知,偏压梯度TiAlN涂层的结合力为44.03 N,远高于文献[10]中恒定偏压TiAlN(‒200 V)涂层的结合力(26.99 N)。梯度偏压沉积方法形成的梯度结构,可减少涂层内部的应力集中,降低涂层的内应力,提高垂直载荷下涂层的抗破裂能力,从而增加了涂层与基体的结合力[31]。
图3 TiAlN涂层的划痕损伤形貌[10]
2.3.1 振动疲劳
TiAlN涂层试件的振动疲劳加载参数及疲劳强度结果如表4所示。由表4可知,TiAlN涂层试件的振动疲劳强度为313~427 MPa,平均强度为370.90 MPa,与文献[32]中的TC4钛合金基体相比提高了47.7%。对考核后的振动疲劳试件进行切割与制样,采用扫描电镜对疲劳断口进行观察。图4a为TiAlN涂层试件的振动疲劳宏观断口形貌,可以看出断裂条纹从试件底部起始,可推断出裂纹源位于试件下表面附近;
对裂纹源区Region A的微观形貌进行进一步观察,如图4b所示,可以看到裂纹源位于基体与涂层界面处,且涂层与基体发生了剥离。虽然振动疲劳试验过程中最大应力位于试件表面,但TiAlN涂层相比于TC4钛合金具有更高的强度和残余压应力,裂纹难以在涂层表面萌生[33];
另一方面,涂层与基体的界面处容易形成应力集中,因而裂纹在界面处萌生。裂纹萌生后,同时向基体内部和涂层内部扩展,如图4c中黄色箭头所示。相对于文献[32]中的TiN/Ti涂层试件,TiAlN涂层中裂纹的扩展路径更短、速率更快,这可能是由于TiAlN涂层残余压应力低于TiN/Ti涂层(‒3.95 GPa),抑制裂纹扩展的能力稍弱。因而,制备TiAlN涂层后振动疲劳强度低于TiN/Ti涂层试件[32]。但相对于TC4钛合金试件,TiAlN涂层制备后仍起到抑制表面裂纹萌生的作用,且裂纹扩展时部分能量在涂层中消耗,因此振动疲劳强度提高。
表4 TiAlN涂层试件振动疲劳加载参数及试验结果
图4 偏压梯度TiAlN涂层试件振动疲劳断口形貌
2.3.2 拉伸疲劳
TiAlN涂层试件的振动疲劳加载参数及疲劳强度结果如表5所示。由表5可知,TiAlN涂层试件的拉伸疲劳强度为350~424 MPa,平均强度为377.90 MPa,与文献[34]中的TC4钛合金基体疲劳强度相当。对比振动疲劳结果可知,TiAlN涂层可提高基体的振动疲劳强度,对拉伸疲劳强度却几乎没有影响。对考核后拉伸疲劳试件进行切割与制样,采用扫描电镜对疲劳断口进行观察。图5是TiAlN涂层试件拉伸疲劳断口形貌,其中图5a为宏观形貌,可以看出呈现出明显的疲劳纹路,纹路反向汇聚于试件的左上角,即裂纹源所处位置。图5b为裂纹源区微观形貌,可以看出,疲劳源依然位于涂层与基体的界面处,但与文献[34]中的TiN/Ti涂层试件界面处全部剥落不同,TiAlN涂层仅存在部分剥落。拉伸疲劳加载过程中,涂层与基体均受到轴向拉伸应力,TiAlN涂层的延展率低于基体,界面处易产生应力集中而萌生裂纹,形成裂纹源。TiAlN涂层存在较大的残余压应力,能够抵消部分拉应力。相对于文献[34]中的TiN/Ti涂层试件,TiAlN涂层的韧性更好,涂层的厚度也更低,与基体变形不匹配度较低,破裂损伤程度较小。因此,TiAlN涂层试件的疲劳强度略高于TiN/Ti涂层试件。但由于涂层发生了部分破裂,一定程度上促进了疲劳裂纹的扩展,与残余压应力抑制裂纹萌生作用相互抵消,因而对基体的疲劳强度影响不大。图5c是TiAlN涂层试件裂纹扩展区的微观形貌,涂层几乎未发生破裂,且与基体结合较好,表明裂纹向基体内部进行了扩展。此外,基体区域可观察到疲劳条带存在,表明涂层仅影响界面处的裂纹萌生及扩展,对基体内部没有影响。
表5 TiAlN涂层试件拉伸疲劳加载参数及试验结果
Tab.5 Tensile fatigue loading parameters and test results of TiAlN specimens
图5 偏压梯度TiAlN涂层试件拉伸疲劳断口形貌
1)梯度偏压工艺成功制备出梯度结构TiAlN涂层。沉积过程中前序低能量下产生的缺陷更容易被后续高能量下形成的吸附离子在其扩散过程中而湮灭,降低了偏压梯度TiAlN涂层的内应力。
2)偏压梯度TiAlN涂层试件的平均振动强度为370.90 MPa,相比基体提高了47.7%;
拉伸疲劳强度为377.90 MPa,与无涂层基体相当。TiAlN涂层内部存在残余压应力,具有一定的抗裂纹萌生能力。
3)涂层制备后,试件的振动及拉伸疲劳裂纹源均位于涂层与基体界面处。振动加载时,裂纹扩展至涂层内部时,涂层中梯度结构可抑制裂纹的扩展。拉伸加载时,TiAlN涂层部分破碎,但与基体未完全剥离,抑制裂纹萌生与促进裂纹扩展两种机制同时存在。
[1] PEPI M, SQUILLACIOTI R, PFLEDDERER L, et al. Solid Particle Erosion Testing of Helicopter Rotor Blade Materials[J]. Journal of Failure Analysis and Prevention, 2012, 12(1): 96-108.
[2] SUZUKI M, INABA K, YAMAMOTO M. Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor[J]. Journal of Thermal Science, 2008, 17(2): 125-133.
[3] IMMARIGEON J P, CHOW D, PARAMESWARAN V R, et al. Erosion Testing of Coatings for Aero Engine Compressor Components[J]. Advanced Performance Materials, 1997, 4(4): 371-388.
[4] RICKERBY D S, BURNETT P J. The Wear and Erosion Resistance of Hard PVD Coatings[J]. Surface and Coatings Technology, 1987, 33: 191-211.
[5] CAI Feng, HUANG Xiao, YANG Qi, et al. Tribological Behaviors of Titanium Nitride- and Chromium-Nitride- Based Physical Vapor Deposition Coating Systems[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(11): 1.
[6] YANG Q, SEO D Y, ZHAO L R, et al. Erosion Resistance Performance of Magnetron Sputtering Deposited TiAlN Coatings[J]. Surface and Coatings Technology, 2004, 188-189: 168-173.
[7] DENG Jian-xin, WU Feng-fang, LIAN Yun-song, et al. Erosion Wear of CRN, TiN, CrAlN, and TiAlN PVD Nitride Coatings[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 10-16.
[8] 程西云, 何俊, 肖舒, 等. 梯度结构对氧化铝陶瓷涂层抗冲击载荷性能的影响[J]. 机械工程学报, 2012, 48(21): 124-131. CHENG Xi-yun, HE Jun, XIAO Shu, et al. Influences of Gradient Structure on the Impact Resistance of Al2O3Ceramic Coatings[J]. Journal of Mechanical Engineering, 2012, 48(21): 124-131.
[9] ZHANG S, BUI X L, FU Yong-qing, et al. Bias-Graded Deposition of Diamond-Like Carbon for Tribological Applications[J]. Diamond and Related Materials, 2004, 13(4-8): 867-871.
[10] CAO Xin, HE Wei-feng, HE Guang-yu, et al. Sand Erosion Resistance Improvement and Damage Mechanism of TiAlN Coating via the Bias-Graded Voltage in FCVA Deposition[J]. Surface and Coatings Technology, 2019, 378: 125009.
[11] PUCHI-CABRERA E S, MATı́NEZ F, HERRERA I, et al. On the Fatigue Behavior of an AISI 316L Stainless Steel Coated with a PVD TiN Deposit[J]. Surface and Coatings Technology, 2004, 182(2-3): 276-286.
[12] BONORA R G, VOORWALD H J C, CIOFFI M O H, et al. Fatigue in AISI 4340 Steel Thermal Spray Coating by HVOF for Aeronautic Application[J]. Procedia Engineering, 2010, 2(1): 1617-1623.
[13] GRYAZNOV B A, MAIBORODA V S, NALIMOV Y S, et al. Effect of the Types of Surface Treatment and Multilayer Coating of Turbine Blade Bodies on Their Fatigue Strength[J]. Strength of Materials, 1999, 31(5): 510-515.
[14] BERRı́OS-ORTı́Z J A, LA BARBERA-SOSA J G, TEER D G, et al. Fatigue Properties of a 316L Stainless Steel Coated with Different ZrN Deposits[J]. Surface and Coatings Technology, 2004, 179(2-3): 145-157.
[15] PERAUD S, VILLECHAISE P, MENDEZ J. Effects of Dynamically Ion Mixed Thin Coatings on Fatigue Damage Processes in Titanium Alloys[J]. Antimicrobial Agents & Chemotherapy, 2013, 21(6): 870.
[16] 贾大炜, 施惠基, 钟斌, 等. 表面高温防护涂层对镍基定向凝固合金低周疲劳行为的影响[J]. 失效分析与预防, 2006, 1(2): 36-40, 44. JIA Da-wei, SHI Hui-ji, ZHONG Bin, et al. Effect of Surface Coating on Low Cycle Fatigue Behavior of Nickel- Based Directionally Solidified Superalloy[J]. Failure Analysis and Prevention, 2006, 1(2): 36-40, 44.
[17] COSTA M Y P, VENDITTI M L R, CIOFFI M O H, et al. Fatigue Behavior of PVD Coated Ti-6Al-4V Alloy[J]. International Journal of Fatigue, 2011, 33(6): 759-765.
[18] 黄海鸿, 杨伟华, 王振苏. 300M钢表面WC10Co4Cr涂层制备及其对疲劳的影响[J]. 航空精密制造技术, 2014, 50(2): 33-35. HUANG Hai-hong, YANG Wei-hua, WANG Zhen-su. Effect of Steel 300M Surface WC10Co4Cr Coating Prepatation on Fatigue[J]. Aviation Precision Manufacturing Technology, 2014, 50(2): 33-35.
[19] 熊晓晨, 燕怒, 姜雨. 表面爆炸喷涂WC涂层对GCr15轴承钢抗疲劳性能的影响[J]. 机械工程材料, 2018, 42(2): 74-77. XIONG Xiao-chen, YAN Nu, JIANG Yu. Influence of Surface Explosion Spraying WC Coating on Fatigue Resistance of GCr15 Bearing Steel[J]. Materials for Mechanical Engineering, 2018, 42(2): 74-77.
[20] ZHOU Da-peng, PENG Hui, ZHU Liu, et al. Microstructure, Hardness and Corrosion Behaviour of Ti/TiN Multilayer Coatings Produced by Plasma Activated EB- PVD[J]. Surface and Coatings Technology, 2014, 258: 102-107.
[21] ZHANG Ming-ming, XIN Li, DING Xue-yong, et al. Effects Ti/TiAlN Composite Multilayer Coatings on Corrosion Resistance of Titanium Alloy in Solid NaCl- H2O-O2at 600 ℃[J]. Journal of Alloys and Compounds, 2018, 734: 307-317.
[22] JANSSEN G C A M, ABDALLA M M, VAN KEULEN F, et al. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers[J]. Thin Solid Films, 2009, 517(6): 1858-1867.
[23] MAXWELL D C, NICHOLAS T. A Rapid Method for Generation of a Haigh Diagram for High Cycle Fatigue [J]. ASTM Special Technical Publication, 1999, 29: 626- 641.
[24] LUO Si-hai, NIE Xiang-fan, ZHOU Liu-cheng, et al. High Cycle Fatigue Performance in Laser Shock Peened TC4 Titanium Alloys Subjected to Foreign Object Damage [J]. Journal of Materials Engineering and Performance, 2018, 27(3): 1466-1474.
[25] ZHANG G P, GAO G J, WANG X Q, et al. Influence of Pulsed Substrate Bias on the Structure and Properties of Ti-Al-N Films Deposited by Cathodic Vacuum Arc[J]. Applied Surface Science, 2012, 258(19): 7274-7279.
[26] 卢龙, 蒋涛, 严铿. 基体负偏压对TiAlN/TiN膜层组织成分及硬度的影响[J]. 热加工工艺, 2009, 38(24): 78-80, 83.LU Long, JIANG Tao, YAN Keng. Effects of Pushed Bias on Microstructure and Hardness of TiAlN/TiN Coating[J]. Hot Working Technology, 2009, 38(24): 78-80, 83.
[27] EIZNER B A, MARKOV G V, MINEVICH A A. Deposition Stages and Applications of CAE Multicomponent Coatings[J]. Surface and Coatings Technology, 1996, 79(1-3): 178-191.
[28] ZHANG Li-qiang, YANG Hui-sheng, PANG Xiao-lu, et al. Microstructure, Residual Stress, and Fracture of Sputtered TiN Films[J]. Surface and Coatings Technology, 2013, 224: 120-125.
[29] PFEILER M, KUTSCHEJ K, PENOY M, et al. The Influence of Bias Voltage on Structure and Mechanical/ Tribological Properties of Arc Evaporated Ti-Al-V-N Coatings[J]. Surface and Coatings Technology, 2007, 202(4-7): 1050-1054.
[30] TILLMANN W, SPRUTE T, HOFFMANN F, et al. Influence of Bias Voltage on Residual Stresses and Tribological Properties of TiAlVN-Coatings at Elevated Temperatures [J]. Surface and Coatings Technology, 2013, 231: 122-125.
[31] CAI J B, WANG X L, BAI W Q, et al. Bias-Graded Deposition and Tribological Properties of Ti-Contained A-C Gradient Composite Film on Ti6Al4V Alloy[J]. Applied Surface Science, 2013, 279: 450-457.
[32] CAO Xin, HE Wei-feng, LIAO Bin, et al. Effect of TiN/Ti Coating Combined with Laser Shock Peening Pre-Treatment on the Fatigue Strength of Ti-6Al-4V Titanium Alloy [J]. Surface and Coatings Technology, 2020, 403: 126393.
[33] MORITA T, ANDATSU K, HIROTA S, et al. Effect of Hybrid Surface Treatment Composed of Plasma Nitriding and DLC Coating on Friction Coefficient and Fatigue Strength of Stainless Steel[J]. Materials Transactions, 2013, 54(5): 732-737.
[34] 曹鑫, 何卫锋, 汪世广, 等. 激光冲击强化前处理对TiN/Ti涂层/基体疲劳性能的影响[J]. 中国表面工程, 2021, 34(3): 120-129. CAO Xin, HE Wei-feng, WANG Shi-guang, et al. Effect of Laser Shock Peening Pretreatment on Thefatigue Properties of TiN/Ticoating/Substrate[J]. China Surface Engineering, 2021, 34(3): 120-129.
Effect and Mechanism of Bias-graded TiAlN Coatings on Vibration and Tensile Fatigue Properties of TC4 Titanium Alloy
1,2*,1,3,1,1
(1. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Sichuan Mianyang 621000, China; 2. Institute of Biomedicine and Medical Devices, Southeast University, Jiangsu Taizhou 225300, China; 3. Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi"an 710038, China)
The erosion resistant coating on the surface of the blade material can improve the sand protection performance. However, the aero-engine compressor blades are subject to the airflow excitation force aroused during the working process, causing the resonance of the blade in the low-order mode. The blades rotate at high speed, bearing huge centrifugal force. After the anti-erosion coating is prepared on the surface of the blade material, it is prone to cause fatigue damage together with the substrate under the above two types of alternating load, influencing the fatigue performance of the substrate. To investigate the effect of the coating on the fatigue properties of the substrate and the fatigue damage mechanism, bias-graded TiAlN coatings was deposited on Ti6Al4V alloy substrates using filtered cathodic vacuum arc (FCVA) technology with the bias-graded deposition method, during which the negative bias was changed gradually from ‒50 V to ‒200 V. The microstructure of the bias-graded TiAlN coating was observed and examined with a scanning electron microscopy. The basic mechanical properties including the element distribution along the depth direction, internal stress, surface hardness and film-substrate bonding force were characterized by an energy dispersive spectroscopy, a profilometer, a nanoindentation and scratch meter, respectively. The vibration and tensile fatigue properties of the bias-graded TiAlN coating/ substrate specimens were evaluated and the fatigue damage mechanism was analyzed by observing the fatigue fracture morphologies of the specimens. The results showed that the coating surface was dense and uniform with few droplets. The Al content along the depth direction of the TiAlN coating was decreased gradually, indicating the gradient structure coating was successfully prepared. The internal stress of the bias-graded TiAlN coating was (2.66±0.23) GPa, which was in a compressive state and significantly lower than that of the constant-bias coating. The inner defects created under the lower bias were more easily removed by the ad-atoms formed under the higher bias during the diffusion process, leading to the lower internal stress in the bias-graded TiAlN coating. The binding force of the bias-graded TiAlN coating was 44.03 N, which was much higher than that of the constant bias TiAlN (‒200 V) coating. The gradient structure could reduce the stress concentration and the internal stress of the coating, improve the crack resistance of the coating under vertical load, thereby increasing the bonding force between the coating and the substrate. The average vibration strength and tensile fatigue strength of the TiAlN coating specimens were 370.90 MPa and 377.90 MPa, respectively. The former was increased by 47.7% compared with the TC4 substrate, and the latter was almost unchanged. The residual compressive stress existed in the TiAlN coating can resistant to crack initiation. After the bias-graded TiAlN coating is prepared on the surface of the TC4 specimen, the fatigue crack sources under the two types of loading are both located at the interface between the coating and the substrate. For the vibration loading, the gradient structure in the coating inhibits the growth of cracks, and thus the fatigue strength increases. While for the tensile loading, the TiAlN coating is partially broken, and the two mechanisms of inhibiting crack initiation and promoting crack growth exist simultaneously, thus the fatigue strength is almost unchanged.
TiAlN coating; bias-graded structure; TC4 titanium alloy; fatigue property; damage mechanism
2022-09-07;
2023-02-13
TG405
A
1001-3660(2023)10-0376-08
10.16490/j.cnki.issn.1001-3660.2023.10.033
2022-09-07;
2023-02-13
国家自然科学基金(52205214)
The National Natural Foundation of China (52205214)
曹鑫, 王静静, 李聪健, 等.偏压梯度TiAlN涂层对TC4钛合金振动与拉伸疲劳性能的影响与机理[J]. 表面技术, 2023, 52(10): 376-383.
CAO Xin, WANG Jing-jing, LI Cong-jian, et al. Effect and Mechanism of Bias-graded TiAlN Coatings on Vibration and Tensile Fatigue Properties of TC4 Titanium Alloy[J]. Surface Technology, 2023, 52(10): 376-383.
通信作者(Corresponding author)
责任编辑:万长清
猜你喜欢 冲蚀偏压钛合金 140MPa井口压裂四通管道冲蚀分析装备制造技术(2021年4期)2021-08-05“神的金属”钛合金SHINE YOUR LIFE中国自行车(2018年8期)2018-09-26钛合金板锻造的工艺实践四川冶金(2017年6期)2017-09-21输气管道砂冲蚀的模拟实验材料科学与工程学报(2016年2期)2017-01-15预留土法对高铁隧道口浅埋偏压段的影响湖南城市学院学报(自然科学版)(2016年2期)2016-12-01医用钛合金的研究与应用当代化工研究(2016年9期)2016-03-20环氧树脂及其复合材料的固体颗粒冲蚀磨损建筑材料学报(2015年4期)2015-11-28浅埋偏压富水隧道掘进支护工艺分析河南科技(2015年4期)2015-02-27灰色理论在偏压连拱隧道中的应用河北工程大学学报(自然科学版)(2015年3期)2015-02-27基于TPS40210的APD偏压温补电路设计电子设计工程(2015年3期)2015-02-27扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1