王希 张爽 胡劲松
摘要:BBM-KdV方程因能描述大量的物理现象如浅水波和离子波等而占有重要的地位,是弱非线性色散介质中长波单向传播的重要模型,其数值研究少有涉及。针对一类带有齐次边界条件的广义BBM-KdV方程的初边值问题,提出了一个具有二阶理论精度的两层非线性有限差分格式,合理模拟了问题本身的两个守恒量,并给出差分格式的先验估计,讨论其差分解的存在唯一性,并用离散泛函分析方法证明该格式的收敛性和无条件稳定性,最后通过数值模拟验证了该数值方法的可靠性。
关键词:广义BBM-KdV方程;差分格式;守恒;收敛性;稳定性
DOI:10.15938/j.jhust.2022.04.019
中图分类号:
O241.82
文献标志码:
A
文章编号:
1007-2683(2022)04-0147-07
Conservative Finite Difference Method for Solving
Generalized BBM-KdV Equation
WANG Xi,ZHANG Shuang,HU Jin-song
(School of Science, Xihua University, Chengdu 610039,China)
Abstract:The BBM-KdV equation plays an important role because it can describe a large number of physical phenomena, such as shallow water waves and ion waves. It is an important model for long-wave unidirectional propagation in weakly nonlinear dispersive media, but its numerical investigations are rarely made. For the initial-boundary value problem of the generalized BBM-KdV equations with homogeneous boundary conditions, a two-level nonlinear finite difference scheme with the second-order theoretical accuracy is proposed, which reasonably simulates the two conserved quantities of the problem. With a priori estimation, the existence and uniqueness of the difference solutions are dicussed. By the discrete functional analysis method the convergence and unconditional stability of the scheme are also proved. Finally, some numerical experiments verify the robustness of the proposed scheme.
Keywords:generalized BBM-KdV equation; difference scheme; conservation; convergence; stability
0引言
1差分格式及守恒性
2差分解的存在性
3收斂性、稳定性及数值解的唯一性
4数值实验
5结语
本文对一类带有齐次边界条件的广义BBM-KdV方程的初边值问题(1)~(3)进行了数值方法研究,提出了一个两层非线性数值差分格式(6)~(8),该格式是无条件稳定的。从表1可以看出,该数值格式明显具有二阶精度;从表2和图1、2可以看出,数值式格式对原问题的物理守恒量(4)和(5)也进行了合理有效地模拟。另外,数值模拟还发现,参数β和γ的变化对数值解的误差影响也较小,所以本文数值求解方法是可靠的。
参 考 文 献:
[1]PEREGRINE D.H.. Calculations of the Development of an Undular Bore[J]. J. Fluid Mech, 1966, 25(2):321.
[2]PEREGRINE D.H.. Long Waves On Beach[J]. J. Fluid Mech, 1967,27(4):815.
[3]BENJAMIN T.B., BONA J.L., MAHONY J.J.. Model Equations for Long Waves in Nonlinear Dispersive Systems[J]. Philos.Trans.Roy. Soc.London., Ser. A, 1972, 272:
47.
[4]KORTEWAG D.J., DEVRIES G.. On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves[J]. Phil.mag.,1985,39(5):
422.
[5]ACHOURI T., KHIARI N ., OMRANI K.. On the Convergence of Difference Schemes for the Benjamin-bona-mahony (BBM) Equation[J]. Appl Math Comput, 2006,182(2):999.
[6]OMRANI K., AYADI M.. Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers Equation[J]. Numer Methods Partial Diff Equ, 2008,24(1):239.
[7]ACHOURI T., AYADI M., OMRANI K.. A Fully Galerkin Method for the Damped Generalized Regularized Long-wave (DGRLW) Equation[J]. Numer Methods Partial Diff Equ,2009,25:668.
[8]OMRANI.K.. The Convergence of Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation[J]. Appl Math Comput, 2006,180(2):614.
[9]KHALIFA A.K., RASLAN K.R., ALZUBAIDI H.M.. A Finite Difference Scheme for the MRLW and Solitary Waves Interactions[J]. J Comput Appl Math 2007,(189):346 .
[10]KADRI T., KHIARI N., ABIDI F., et al. Methods for the numerical solution of the Benjamin-Bona-Mahony-Burgers equation[J]. Numer Methods Partial Differ Equ,2008(24):1501.
[11]ACHOURI T., OMRANI K.. Application of the Homotopy Perturbation Method to the Modified Regularized Long-wave Equation[J]. Numer Methods Partial Differ Equ, 2010,26(2):399.
[12]ABBASBANDY S., SHIRZADI A.. The First Integral Method for Modified Benjamin-Bona-Mahony Equation[J]. Commun Nonlinear Sci Numer Simulat,2010,15:1759.
[13]DEHGHAN M., ABBASZADEH M., MOHEBBI A.. The Numerical Solution of Nonlinear High Dimensional Generalized Benjamin-Bona-Mahony-Burgers Equation Via the Meshless Method of Radial Basis Functions. Comput Math Appl, 2014,68(3):212.
[15]MEI L., CHEN Y.. Numerical Solutions of RLW Equation Using Galerkin Method with Extrapolation Techniques[J]. Comput Phys Commun, 2012,183(8):1609.
[16]MOHAMMADI M., MOKHTARI R.. Solving the Generalized Regularized Long Wwave Equation on the Basis of a Reproducing Kernel Space[J]. J. Comput, 2011, 235(14):
4003.
[17]DUTYKH D., PELINOVSKY E.. Numerical Simulation of a Solitonic Gas in KdV and KdV-BBM Equations[J].Phys. Lett. A, 2014, 378:3102.
[18]ASOKAN R., VINODH D.. Soliton and Exact Solutions for the KdV-BBM Type Equations by Tanh-coth and Transformed Rational Function Methods[J]. Int. J. Appl. Comput. Math,2018,(4):100.
[19]ROUATBI A., OMRANI K.. Two Conservative Difference Schemes for a Model of Nonlinear Dispersive Equations[J]. Chaos Solitons Fractals:
2017(104):516.
[20]何麗,王希,胡劲松.广义BBM-KdV方程的一个守恒C-N差分格式[J].理论数学,2021,11(4):428.HE Li, WANG Xi, HU J. A Conserved C-N Difference Scheme for Generalized BBM-KdV Equations[J]. Theor Math., 2021, 11(4):
428.
[21]ZHOU Y.L. Application of Discrete Functional Analysis to the Finite Difference Methods[M].Int. J algebra comput, Pergamon Press, 1991:
260.
[22]BROWDER F.E.. Existence and Uniqueness Theorems for Solutions of Nonlinear Boundary Value Problems[J]. Proc. Symp. Appl Math.,1965(17):24.
(编辑:温泽宇)
猜你喜欢收敛性稳定性一类k-Hessian方程解的存在性和渐近稳定性数学物理学报(2021年5期)2021-11-19SBR改性沥青的稳定性评价石油沥青(2021年4期)2021-10-14行间AANA随机变量阵列加权和的完全矩收敛性数学物理学报(2020年6期)2021-01-14WOD随机变量序列的完全收敛性和矩完全收敛性数学物理学报(2019年5期)2019-11-29END随机变量序列Sung型加权和的矩完全收敛性数学物理学报(2018年6期)2019-01-28非线性中立型变延迟微分方程的长时间稳定性数学物理学报(2018年1期)2018-03-26END随机变量序列Sung型加权和的矩完全收敛性Acta Mathematica Scientia(English Series)(2018年6期)2018-03-01半动力系统中闭集的稳定性和极限集映射的连续性厦门理工学院学报(2016年1期)2016-12-01行为ND随机变量阵列加权和的完全收敛性数学年刊A辑(中文版)(2015年4期)2015-10-30松弛型二级多分裂法的上松弛收敛性应用数学与计算数学学报(2015年1期)2015-07-20扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1