六年级数学上册数学应用题第1篇教学目标使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。进一步培养学生自主探索问题解决的能力和分析、推理和判断等思下面是小编为大家整理的六年级数学上册数学应用题19篇,供大家参考。
教学目标
使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。
进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点
分数除法应用题的特点及解题思路和解题方法。
教学准备
教学过程设计
教学内容
师生活动
一、 复习引新
二、教学新课
三、巩固练习
四、课堂小结
五、作业
1、先说出单位1,再说出数量关系式
(见课件)
2、做43页复习题
问:这道题怎样想?
3、引入新课
解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例1
(1)出示例1,学生读题,说明条件和问题。
问:关键句是哪一句?谁占果树总棵数的2/5?
单位1是谁?
(2)让学生画出线段图
(3)学生独立列式解答。
(4)讨论:哪种方法比较简单?
指出:求单位1的应用题一般来说用方程解。
2、比较解法
请同学们比较例1和复习题。
问:在条件、问题上有什么相同点和不同点?
在解法上有什么相同点和不同点?
小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。
1、做练一练
让学生先写出数量关系式再解答。
2、做练习十第4题
问:要怎样想?根据什么来列方程?
今天学了什么?解答此类应用题要怎样思考、分析?
练习十第2、3题
课后感受
本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!
(一)课堂教学设计说明
1、本节课围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
2、因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。
(二)不足:
当然,虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:
1、反馈形式比较单调,缺乏激励性的语言和形式,某种程度上影响了学生学习的积极性。
2、在学生表述单位“1”加几分之几,表示什么意思时,发现很多的同学有点模糊。
3、学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
学好应用题能有效提高学生的分析能分析思维能力,求一个数的几分之几是多少的应用题,是学生学习分数应用题的起始内容,是学习分数应用题的基础,在本课教学中,我努力做到了以下几点:
一、 联系生活,激发兴趣。
《国家数学课程标准》指出:数学教学要从学生的生活经验和已有的知识背景出
发,向他们提供充分的从事数学活动和交流的机会,教学一开始我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、自主探究,解决问题。
每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的
理解。学生的这种不同理解,其实就是一种很好的课程资源,在新知教学过程中,学生在理解题意的基础上,先画线段图,后尝试解答,再合作研讨。如:在计算我班参加田径队的有多少人,在巡视检查的过程中,发现学生有两种解法:(1)49÷7×2(2)49× 。于是我请两位同学上台板演,并要求他们讲讲自己解题的想法。在此基础上引导学生分析比较两种解法的联系。同学们在合作探讨中清楚地认识了两种求法实际上都是求49的2/7是多少,在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。
三、精心练习,追求高效。
如何让学生体会学习数学有用,学习数学有价值。我想,最好的办法是设计相关练
习,让学生应用所学的数学知识来解决实际问题,由此来体会数学与生活的密切联系。在本课教学中,我采用新颖的图文结合的形式呈现问题,通过尝试计算我们班参加烹饪组的有多少人、参加田径队的有多少人,为学生创造了学数学的氛围,又巩固了分数乘法应用题的数量关系,渗透了学法指导,培养了学生的探究能力,在练习过程中,有效地培养了学生选择信息、加工信息、整合信息的能力。以人为本是新课程改革的核心理念。在教学中,我们要创造性使用教材,让教材真正成为学生自主开展数学学习的有效素材,我们应从学的层面对教材进行学习化的加工,应站在学材的视角上对教材从内容、结构、呈现方式等多个角度作出理性重构,努力使教学内容为学生所喜欢。我们要给学生提供充分探求的空间,有力促进学生积极、主动、高效地学习,让学生真正成为课堂教学的有效资源。我们还要精心设计练习,使学生学以致用,体会到学数学有用。总之,我们要努力让数学课堂成为焕发学生生命动力的殿堂!
教学内容:课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:正确分析数量关系,找准单位1
教学难点:依题意正确画图教学过程:
一、复习。
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的,有40只黑羊。()?
二、新授。
1.出示例3。
小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
三.巩固练习。
完成练习四的第6、7题。
四、全课小结。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
五、布置作业。
完成练习四的第8~10题。
教学反馈:
回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
1、充分重视了学生的兴趣,在整节课中我营造了一种民主、和谐、宽松、自由的教学氛围,既为新知的学习营造良好的氛围,也让学生在不知不觉间做好情感上的准备。例题的选择、练习的设计都和生活实际相关,学生自始至终保持浓厚的兴趣,也体现了课堂教学整体结构的美。
2、本节课的教学中特别强调了线段图的作用,线段图的教学从三年级就开始了,但在平时的解题过程中学生没有利用线段图帮助分析理解题意的意识和习惯,究其原因是学生没有体会到线段图的作用,认为这是可有可无的东西,本节课这么强调线段图就是想让学生明白线段图能让你更清楚地找到数量之间的等量关系,能帮你找到与众不同的解法,能让你更准确地把握住数量之间的"对应关系等等,只有让学生真正的明白其作用,才能有用的意识,从而形成用的习惯。
不足之处:
1.本节课,花了较多的时间让学生说不同的思考方法、思考过程,对于哪些学困生来说是不是有必要,因为他们只能听懂其中的某一些解法,在别人“说”的时候,他们在一定的时间段里成了“观众”和“听众”,如何更好地面向每一位学生是以后努力的方向。
2.反馈形式比较单调,缺乏激励性的语言和形式,某种程度上影响了学生学习的积极性,应采取多种形式如让学生间搞个小竞赛等来活跃课堂气氛,激发学生学习的兴趣。
教学内容:
义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。
教材简析:
教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。
教学目标:
1、知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。
2、能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。
3、情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学过程:
一、创设情境,谈话导入。
谈话:同学们,08的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?
[设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。
二、自主探究,获取新知。
1.课件出示教科书73页情境
谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?
(1)北京故宫的占地面积大约是多少公顷?
(2)我国的世界文化遗产和自然遗产一共有多少处?
(3)我国的世界文化遗产比自然遗产多多少处?………
(4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?
2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?
[设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。
3.选择你喜欢的方法试着独立解决这一问题好吗?
4.学生汇报交流。
让学生到前面展示不同的方法,分别说说自己的解题思路。
(1)272×1/4=68(公顷) 68+4=72(公顷)
(2)272×1/4+4
=68+4
=72(公顷)
学生在多次交流解题步骤中,教师板书数量关系
天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积
并展示学生画的线段图。让学生分析线段图。
[设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。
5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?
学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)
全班交流,展示做题方法。
(1)30×7/10+30×2/15 (2)30×(7/10+2/15)
=21+4 =30×25/30
=25(处) =25(处)
6.让学生展示线段图的画法,说清解题思路。
7.点题并板书:分数应用题。
8.单看这两个算式的计算,你能想到什么运算律?有什么启发?
9.小结:乘法的分配律在分数中同样适用。
[设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。
三、巩固练习,加深理解。
独立完成(第75页第2、3题。)
指生回答,并说出解题思路。
(重点说出数量关系。)
[设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。
四、回归实践,拓展运用。
课件再次出示本课信息窗情境图。
谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?
现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。
课本76页第9题。学生读题,指生列式。
[设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。
五、谈收获。
这节课你有什么收获?
教材分析:
本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、 谈话激趣,复习辅垫
1. 师生交流
师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)
对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?
师:老师查到了一些资料,我们一起来看一下。(课件出示)
2.复习旧知
师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?
学生回答后说明理由。
师:算一算你们自己体内水分的质量吧!
生答
师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?
生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量
35× 5 (4 )=28(千克)
师:谁还能根据另一个信息写出等量关系式?
成人的体重× 3 (2 )=成人体内的水分的重量
2. 揭示课题
师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。
二、 引导探究,解决问题
1. 课件出示例题。
2. 合作探究
师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。
3. 学生汇报
生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)
生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。
28÷ 5 (4 )=35(千克)
4. 比较算法
比较算术做法与方程做法的优缺点?
(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)
5. 对比小结
和前面复习题进行比较一下,看看这题和复习题有什么异同?
(1) 看作单位“1”的数量相同,数量关系式相同。
(2) 复习题单位“1”的量已知,用乘法计算;
例1单位“1”的量未知, 可以用方程解答。
(3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。
6.试一试:
一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?
问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?
单位“1”是已知还是未知的?
根据学生回答画线段图。
根据题中的数量关系找学生列出等量关系式。
学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。
师:这道题你还能用其它方法解答吗?
(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)
三、 联系实际,巩固提高
1. (投影)看图口头列式,并用一句话概括题中的等量关系。
(1)
(2)
2.练一练:
(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?
(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?
3.对比练习
(1)一条路50千米,修了 5 (2 ),修了多少千米?
(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?
(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?
四、全课小结畅谈收获
①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。
教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。
设计意图:
一、从生活入手学数学。
《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;
或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;
“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、 有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;
通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
年级分数除法(三)的内容是用方程解决简单有关分数的实际问题,初步体会方程是解决实际问题的重要模型。教学时,由于我认为很简单,对学生分析不够,过于相信学生,用方程解答完成后,就让学生用别的方法解,同时要求画出线段图。学生虽能列出正确的算术式计算,但不能熟练画图。
发现这个问题后,我就及时的对学生进行画图能力的训练,经过一节课的练习,大部分学生基本掌握画图的技巧。通过这节课的教学,使我深深的体会到,要想让知识真正地在师生互动中,学生得到理解、接受并掌握起来,教师就要认真地备学生,只有从学生的实际出发,因材施教,才能达到教育的最优化。
时间过得很快,转眼间一个月的时间又过去了,第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的`实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算按分子和分子相加,分母和分母相加,到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的"解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
教学内容:
教科书第117—118页,例4和“做一做”,练习二十五的第1—4题。
教学目标:
1.整理和复习与“一个数比另一个数多(或少)几分之几”有关的分数应用题,进一步理解这些稍复杂的分数应用题之间的内在联系,掌握它们的解答方法。
2.在计算过程中进一步培养学生良好的观察、分析、判断能力。
3.体会数学的实用价值,提高同学们对学习数学的兴趣。
教学重点:
稍复杂的分数应用题的数量关系。
教学难点:
稍复杂的分数应用题之间的内在联系。
教具准备:
教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。
教学过程:
一、口算练习
教师出示小黑板上的口算练习题。
二、教学例4
1.复习“求一个数比另一个数多(或少)几分之几”的应用题。
“下面我们来复习分数应用题。”(出示小黑板上的例4。)
例4 学校举办的美术展览中,有50幅水彩画,80幅蜡笔画,蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?
“请同学们先自己解答这道应用题,解答完以后,想一想这道题中的两个问题有什么相同之处,有什么不同之处?”
(80 - 50)÷50 =
(80 - 50)÷80 =
答:蜡笔画比水彩画多:水彩画比蜡笔画少。
解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。
小结:我们在解答分数应用题时,一定要认真分析数量关系,要弄清以哪个数量作为标准,也就是说:要弄清以哪个数量作为单位“1”。
2.复习“已知一个数比另一个数多(或少)几分之几和其中的一个数,求另一个数”的应用题。
“接着例4的这两个问题,我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)
(1)根据“蜡笔画比水彩画多”这个条件
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
(2)根据“水彩画比蜡笔画少”这个条件
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
分析的时候,教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1);
反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。
3.复习百分数应用题。
“如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)
(例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)“百分数应用题与分数应用题实质是一样的,只不过是把比较两个数量关系的分数用百分数来表示。”
1.做教科书第117页“做一做”的第l题。
教师巡视,做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的.关系,以加深学生对这些实际问题的理解。
2.做教科书第117页“做一做”的第2题。
谈谈这节课你的收获?
练习二十五的第1—4题。
面对今年的班级,作业批改是个问题,一直来,我喜欢面批,特别是对学困生,我觉得面批他们的作业对他们会有更大的帮助,因为学困生形成的原因总体来说有以下几个。
首先是接受能力差,他们往往反应慢,比同龄同学慢半拍甚至更多;
其次,学习不用心,注意力集中不了,总是分神,如果课堂上趣味性的东西多,他又会“跑出”课堂更加收不拢心;
再则,确实由于他对学习提不起精神,就是对读书“感冒”,再怎么弄都是心神疲惫;
最后,还有可能是教师本身的素质,不能让学生对学习感兴趣,从而导致学习每况愈下。当然,最后一种的原因对小学生来说,发生的比例不大,毕竟儿童还是单纯的。针对学困生多的现状,我觉得我有必要对每一个学生的作业进行面批,我想,近几年自己的数学教学效果还说得过去的原因可能要归结在这上面。
进入六年级了,开学至今已近一个月,分数乘法应用题的教学也已经结束。但这块内容让我上得头疼,心烦。在课堂上,我很明确得按照分数应用题的解答方法:找准标准量——找出关键句——写出对应分率——用对应量=标准量×对应分率来解答。可是学生就是找不准分率,特别是当“求一个数的几分之几是多少”和“求比一个数多或少几分之几的数是多少”同时出现时,他们就弄不明白分率究竟是多少。我也知道分数应用题是个难点,一方面整数过度到分数,受整数的影响,学生适应度不够;
其次,分数乘法、分数除法的计算刚开始,学生对把分数计算的结果化成最简的把握还是难点,不易掌握。
一种似懂非懂的状态从他们的表情上马上可以读出。在高质量的教学任务的要求下,我觉得对知识的强化训练还是必须的,而且一定要到位,所以这块知识点我是在有限的时间里,题量不多,要求以质量为主,我边巡视边指导,然后学生做完我及时面批,这样的反复训练学生有了很大程度的提高。再则大纲也要求,分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。除了引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义上,我也有跨度地做分数乘、除法应用题的对比性练习,因为分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。而在教学时适当地进行对比训练,使学生在对比中求新、求异、求同、求实;
这样学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。另外,在对学困生的辅导中,用直观的线段图进行分析,通过多变沟通联系,如补条件,补问题等的形式进行补充,这样也能提高学生解题的熟练程度。分数乘法应用题及分数除法应用题是这学期的难点,“温过而知新”,相信反复地进行有针对性的进行“磨练”,学生还是能进步的。
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位、找出等量关系
教学难点
能正确的分析数量关系并列方程解答应用题
教学过程
一、复习、引新
(一)确定单位
1.铅笔的支数是钢笔的倍. 2.杨树的棵数是柳树的
3.白兔只数的 是黑兔 4.红花朵数的 相当于黄花
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1:
(棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;
而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.课件演示:
2.列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的" .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
面对今年的班级,作业批改是个问题,一直来,我喜欢面批,特别是对学困生,我觉得面批他们的作业对他们会有更大的帮助,因为学困生形成的原因总体来说有以下几个。
首先是接受能力差,他们往往反应慢,比同龄同学慢半拍甚至更多;
其次,学习不用心,注意力集中不了,总是分神,如果课堂上趣味性的东西多,他又会“跑出”课堂更加收不拢心;
再则,确实由于他对学习提不起精神,就是对读书“感冒”,再怎么弄都是心神疲惫;
最后,还有可能是教师本身的素质,不能让学生对学习感兴趣,从而导致学习每况愈下。当然,最后一种的原因对小学生来说,发生的比例不大,毕竟儿童还是单纯的。针对学困生多的现状,我觉得我有必要对每一个学生的作业进行面批,我想,近几年自己的数学教学效果还说得过去的原因可能要归结在这上面。
进入六年级了,开学至今已近一个月,分数乘法应用题的教学也已经结束。但这块内容让我上得头疼,心烦。在课堂上,我很明确得按照分数应用题的解答方法:找准标准量——找出关键句——写出对应分率——用对应量=标准量×对应分率来解答。可是学生就是找不准分率,特别是当“求一个数的几分之几是多少”和“求比一个数多或少几分之几的`数是多少”同时出现时,他们就弄不明白分率究竟是多少。我也知道分数应用题是个难点,一方面整数过度到分数,受整数的影响,学生适应度不够;
其次,分数乘法、分数除法的计算刚开始,学生对把分数计算的结果化成最简的把握还是难点,不易掌握。
一种似懂非懂的状态从他们的表情上马上可以读出。在高质量的教学任务的要求下,我觉得对知识的强化训练还是必须的,而且一定要到位,所以这块知识点我是在有限的时间里,题量不多,要求以质量为主,我边巡视边指导,然后学生做完我及时面批,这样的反复训练学生有了很大程度的提高。再则大纲也要求,分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。除了引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义上,我也有跨度地做分数乘、除法应用题的对比性练习,因为分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。而在教学时适当地进行对比训练,使学生在对比中求新、求异、求同、求实;
这样学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。另外,在对学困生的辅导中,用直观的线段图进行分析,通过多变沟通联系,如补条件,补问题等的形式进行补充,这样也能提高学生解题的熟练程度。分数乘法应用题及分数除法应用题是这学期的难点,“温过而知新”,相信反复地进行有针对性的进行“磨练”,学生还是能进步的。
大家都知道,六年级的数学课,老师们都不愿意教,因为这是小学阶段知识的综合,特别是本册教材,有很多知识的难点和重点。即使会方法,以前的知识如果学不好,成绩也很难提高。从开学到现在,每上完一节数学课,我和胡老师、薛老师都要进行交流反思。要讲《稍复杂分数乘法应用题》了,我们三个在交流着教学方法。回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
1、我一改过去先讲课本例题的做法,自己编了一道跟学生生活相关的题目。所以例题的选择、练习的设计都和生活实际相关,这样学生自始至终保持浓厚的兴趣。
2、教学中先复习分数的意义,让学生明白求一个数的几分之几是多少用乘法,铺垫后进入新课。例题教学时充分的相信学生,大胆的放手让学生去尝试。教学中定点找准单位“1”,理解多(或少)几分之几的量与单位“1”的关系。每个环节都尽量让学生去独立思考、主动探究和积极表达,力争让学生在独立思考、小组交流和全班交流等形式完成了任务。总的来说,效果比想象的要好多了。
教学中的不足在学生的作业中出现线段图的画法有错误:
第一;
已知条件没有标清或问题没有标出;
第二;
不知道该画几条线段;
为此,在练习中我让学生自己画图那然后大家一起评,找出画的不合理的地方一起改,加深印象。本节课中,多数学生都会列算式,画图吃力,看来学生还没有真正的理解,需要多做题吧。
在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:
1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。
2、出示新课,让学生找单位“1”,画线段图分析。
引到学生想:画图时,先画什么,再画什么?怎样画?
3、根据线段图,写关系式。
4、根据关系式列算式,并解答。
学生根据自己的想法,列出了两种不同的数量关系式,根据不同的关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。
本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。
教材分析:
这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的.分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
学情分析:
用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。
教学目标:
1、认识求比一个数多(少)百分之几的应用题的结构特点。
2、理解和掌握这类应用题的数量关系、解题思路和解题方法。
教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。
教学难点:理解这类应用题的数量关系、解题思路和解题方法。
教具准备:
小黑板
教学过程:
第一课时
活动(一)铺垫复习。
1、说出下面各题中表示单位1的量,并列出数量关系式。
(1)男生人数占总人数的百分之几?
(2)故事书的本数相当于连环画本数的百分之几?
(3)实际产量是计划产量的百分之几?
(4)水稻播种的公顷数是小麦的百分之几?
2、只列式,不计算。
(1)140吨是60吨的百分之几?
(2)260吨是40吨的百分之几?
3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
活动(二)相互合作,探究问题:
1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
2、讨论:
(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?
(2)根据线段图,这道题应该怎样思考、解答?
列式解答:
(14-12)12=2120.167=16.7%
答:实际造林比原计划多16.7%。
3、学生阅读课本,对照例3的解答,质疑问难。
4、想一想,例3还有其他解法吗?
可能出现1412-100%116.7%-100%=16.7%
5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?
(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)
解答过程:
(14-12)14或者:1-1214
=2141-0.857
0.143=1-85.7%
=14.3%=14.3%
答:原计划造林比实际造林少14.3%。
活动(三)、巩固练习
1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。
(1)今年比去年增产百分之几?
(2)男生比女生少百分之几?
(3)一种商品,降价了百分之几?
(4)客车速度比货车慢百分之几?
(5)货车速度比客车快百分之几?
2、判断题。(对的在括号里打,错的打。)
(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。
(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。
教学目标:
1、结合具体的情景,体会理解分数加减法的意义。
2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。
3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。
教学重点:
理解并掌握异分母加减法的计算方法与法则。
教学难点:
掌握异分母分数加减法的算理与算法。
教学过程:
一、复习引入
(一)复习有关分数单位的知识。
1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。
)
2、填一填 7/16 的分数单位是( ) ,它有( )这样的分数单位。
7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?
(二)复习通分
2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。
出示课题:分数加减法
二、创设情境、提出问题
1、同分母分数加减法 出示例 1(展示课件)
师:
你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)
抽学生口头汇报,同时老师根据学生的回答课件出示。
引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。
生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。
生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16—1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。
师:你们真能干,不仅提出了问题,还正确的解答出来了。
师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。
师:有谁能用自己的话说一说分母相同的分数怎样加减呢?
生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。
生举出类似的算式计算(全班练习)
2、异分母分数加减法
师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?
生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)
师:说说结果是怎样得来的?预设:画图得出结果。
把分母变成同分母分数,再计算得出来的。
把分数化成小数计算,再把计算结果的小数化成分数。
……
师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?
学生说出自己的意见
师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。
1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4
师:同学们在计算过程中,最关键的步骤是什么?
生:最关键的步骤是先通分,再计算。
师:说一说,异分母分数的计算方法?
生:异分母分数相加减,先通分,再按同分母分数加减法计算。
三、学生练习
1、基础练习 填一填:(出示课件)
①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。
②异分母分数相加减,先(算一算:
4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24
2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。
得出:1/a+1/b=(b+a)/ab
3、接龙游戏
1/2+1/3 3/4-1/2
四、课堂小结
1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9—6/9=1/9 通分),再按( 同分母分数加减法 )计算。
(每组 6 个同学,一个接一个地计算,看哪组又对又快)
扩展阅读文章
推荐阅读文章
恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有
Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1