手机版
您的当前位置: 恒微文秘网 > 范文大全 > 专题范文 > 2023年度年级数学思维导图10篇【精选推荐】

2023年度年级数学思维导图10篇【精选推荐】

来源:专题范文 时间:2024-04-20 13:57:02

年级数学思维导图第1篇本册教科书一共安排了8个单元,其中数与代数领域有4个单元,主要内容有分数的加减法、分数乘法、分数除法、用方程解决问题;图形与几何领域有3个单元,主要有长方体一、长方体二和确定位置下面是小编为大家整理的年级数学思维导图10篇,供大家参考。

年级数学思维导图10篇

年级数学思维导图 第1篇

本册教科书一共安排了8个单元,其中数与代数领域有4个单元,主要内容有分数的加减法、分数乘法、分数除法、用方程解决问题;
图形与几何领域有3个单元,主要有长方体一、长方体二和确定位置;
统计与概率有1个单元,主要内容为数据的表示和分析;
除此之外还有数学好玩、整理与复习和总复习。

一、教材分析

(一)数与代数

第一单元“分数加减法”理解异分母分数加减法的算理,并能正确计算;
能理解分数加减混合运算的顺序,并能正确计算;
能把分数化成有限小数,也能把有限小数化成分数;
能结合实际情境,解决简单分数加减法的实际问题。

第三单元“分数乘法”结合具体情境,在操作活动中,探索并理解分数乘、除法的意义;
探索并掌握分数乘、除法的计算方法,并能正确计算;
能解决简单的分数乘、除法的实际问题,体会数学与生活的密切联系。

第五单元“分数除法”了解倒数的意义,会求一个数的倒数。能够正确进行分数混合运算;
理解整数的运算律在分数运算中同样适用;
结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。

第七单元“用方程解决问题”在列方程的过程中,会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。由于有两个未知数,需要选择设一个未知数为x,再根据两个未知数之间的关系,用字母表示另一个未知数。同时经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

(二)空间与图形

第二、四单元“长方体(一)(二)”通过观察、操作等活动,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;
了解体积(包括容积)的含义;
认识体积(包括容积)单位,探索并掌握长方体、正方体表面积、体积的计算方法,并能解决简单的实际问题;
探索某些不规则物体体积的测量方法;
引领学生在观察、操作等活动中,发展动手操作能力和空间观念。

第六单元“确定位置”能在具体的情境中,用方向和距离来表示物体位置;
在具体的情境中,自建参数系确定位置。

(三)统计与概率

第八单元“数据的表示和分析”学生在这一单元认识学习复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点;
能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;
能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。通过实例,理解中位数、众数的意义,会求一组数据的中位数、众数,并解释结果的实际意义。

(四)数学好玩

本单元设置了“象征性”长跑、有趣的"折叠、包装的学问三个内容,主要目的鼓励学生从数据中获取尽可能多的有效信息,激发学生学习数学的兴趣,体会数学思想,锻炼思维能力,积累思考经验,开阔眼界。

二、教学目标:

1、结合具体情境,在操作活动中,探索并理解分数加、减、乘、除法的意义;
探索并掌握分数加、减、乘、除法的计算方法,并能正确计算;
能解决简单的分数加、减、乘、除法的实际问题,体会数学与生活的密切联系。

2、了解倒数的意义,会求一个数的倒数。

3、能够正确进行分数混合运算;
理解整数的运算律在分数运算中同样适用;
结合实际情境,能用多种方法解决简单分数混合运算的实际问题,体会分数混合运算在现实生活中的广泛应用。

4、通过观察、操作等活动,认识长方体、正方体及其基本特征,知道长方体、正方体的展开图;
了解体积(包括容积)的含义;
认识体积(包括容积)单位,探索并掌握长方体、正方体表面积、体积的计算方法,并能解决简单的实际问题;
探索某些不规则物体体积的测量方法;
引领学生在观察、操作等活动中,发展动手操作能力和空间观念。

5、了解复式条形统计图、复式折线统计图的特点与作用;
能根据需要,选择条形统计图、折线统计图直观、有效地表示数据;
通过实例,进一步理解平均数的意义,会求一组数据的平均数,并解释结果的实际意义。

6、能综合运用所学的知识和方法解决实际问题,感受数学在日常生活中的作用;
获得一些初步的数学活动经验和方法,发展解决问题和运用数学进行思考的能力;
感受数学知识间的相互联系,体会数学的作用;
在与同伴合作和交流的过程中,发展数学学习的兴趣和自信心。

三、教学重点

1、掌握异分母分数加减的计算方法,并能正确计算。

2、能正确进行分数加减混合运算;

3、能正确进行分数和小数的互化;

4、了解长方体和正方体的的几何结构。掌握长方体表面积的计算方法;

5、理解整数与分数乘法的意义,理解分数乘分数的意义及其计算方法;

6、理解除数是分数的除法的意义,分数除法的计算方法。

7、在方格纸上会用数对确定物体的位置。根据方向和距离确定物体位置的方法。

8、掌握解列方程解决问题的解题方法

9、提高复式条形、复式折线统计图的绘制方法与读图能力;
理解平均数的意义,学会求简单数据的平均数

四、教学难点

1、学会异分母分数加减的计算方法;

2、灵活计算长方体、正方体的表面积;

3、学懂整数与分数的乘法的两种意义之间的联系;

4、感受1立方米、1立方厘米以及1升、1毫升的实际意义,能形象地描述这些体积单位实际有多大;

5、学会除数是分数除法的意义;

6、准确理解“南偏东30度”和“东偏南30度”的不同。在具体情境中,能根据不同的观察点来判断方向;

7、能够快速地分析、找到数量之间的相等关系,列出方程;

8、根据统计图提出数学问题和作出简单的判断与推测;
理解平均数的意义。

年级数学思维导图 第2篇

代替了传统的数学笔记形式

思维导图模式是一种新型的教学模式,它简单易懂,将数学的知识复杂变成简单的过程,但是老师在课堂的讲解中对学生进行一定程度上的引导,使学生能够熟练掌握思维导图的学习方式进行学习。老师可以使学生在课堂中利用彩笔在纸上绘制,并且利用不同的形状代表不同的数学元素,以此往下延伸,最后用不同颜色的文字进行说明,但是老师要引导学生在说明的过程中不要用太多的文字,尽量精简。这样的方式可使学生尽量掌握思维导图的学习模式,也可以充分调动学生的学习兴趣,从而提高学生的学习成绩,有效提升了数学的教学质量。

例如:学生在课后的预习中,时常会感觉到数学知识过于琐碎,没有整体性,一看自己在课堂上做的笔记,更是脑子一片空白,不知道从哪方面复习好。但是老师在课堂教学的整个过程中,进行思维教学的正确引导,使学生能利用思维导图的学习模式进行学习,不仅仅可以帮助学生很快建立数学知识点的构架,在短时间内帮助学生弄清数学知识的脉络,也可以减少学生的学习时间,避免了学生在学习中出现的无用功。

运用思维导图模式进行自我评价,帮助老师了解学生学习情况

思维导图具有一定的评价功能,老师可以利用思维导图对学生在课上的学习情况进评价,了解内一个学生的学习情况,为以后的在教学中采取的措施提供了有利的条件。通过培养学生用思维导图进行学习,可以有效帮助老师了解在讲解的过程中学生的领悟能力,给老师一个更直观的画面。

另外,学生在进行思维导图绘制的过程中,也是一个自我评价的过程,帮助学生能够很清晰地认识到自己在学习过程中的不足,在和老师讲解过程中的思维导图进行比较,这样就能使学生很快认识到自己在学习方面存在的问题,并加以改进,这样不仅仅激发了学生的学习热情,更是减少了学生的学习负担,使学生在轻松中提高自己的成绩,从而有效提高了数学的教学质量。

年级数学思维导图 第3篇

鼓励合作交流,促进思维

思维和语言有着密切的联系。爱因斯坦说过:“一个人智力的发展和他形成的概念的方法,在很大程度上是取决于语言的。”思维是对客观事物间接地、概括地反映。虽然语言是思维的外壳,但语言本身具有概括性和间接性的功能。

如果语言不具备这些功能,人的思维,特别是抽象思维就难以进行,古人云:“言有心声,言乃说。”“说”离不开大脑的思维,并可促进大脑的思维。在课堂中我们常常会发现有些孩子叙述解题思路时总是一愣一愣的,有些孩子不乐于说,还有的说得不够完整,等等,这些常常让我们感到很苦恼。因此在数学课堂教学过程中,教师要积极创建一种民主和谐的课堂氛围,让学生敢说、乐说,不断给学生提供“说”的机会,鼓励学生把自己的想法跟同学交流。

设计相近的问题进行思维能力的培养与训练

学生在学习新知识前,教师设计与新知识相近或类似的问题,由易到难,让学生多构思几种方法,以便将各方面的知识融会贯通,开拓思路,使学生的思维能力得以训练。如在讲授“异分母分数加减”时,引入新课时,我先设计了这样几个问题:①整数、小数、同分母分数的加减法法则是怎样的?②整数、小数、同分母分数的相加减时,它们的分数单位相同吗?学生回答后,我又设计了这样相近的问题:③异分母的分数单位相同吗?能直接相加减吗?④异分母分数不能直接加减,应怎么办?

⑤怎样把异分母的分数变为同分母的分数?针对这些类似的问题教师要想方设法打开学生思维的大门,掀起学生思想的涟漪,使学生在积极的思维中进行逐一思考,学生就会很自然地进行类比思维,很容易的找出异分母分数相加减的计算方法。事实上,任何科学成就都是在思维的基础上发展而来的。所以我们的教师要在学生学习知识的过程中,去训练和发展他们的思维能力。古人提出的“学而不思则罔,思而不学则殆”是不无道理的。因此,只有在学习中培养和训练学生的思维能力,才能取得较好的效果、达到预期的目的。

如何培养三年级学生的数学思维导图相关

年级数学思维导图 第4篇

代替了传统的数学笔记形式

思维导图模式是一种新型的教学模式,它简单易懂,将数学的知识复杂变成简单的过程,但是老师在课堂的讲解中对学生进行一定程度上的引导,使学生能够熟练掌握思维导图的学习方式进行学习。老师可以使学生在课堂中利用彩笔在纸上绘制,并且利用不同的形状代表不同的数学元素,以此往下延伸,最后用不同颜色的文字进行说明,但是老师要引导学生在说明的过程中不要用太多的文字,尽量精简。这样的方式可使学生尽量掌握思维导图的学习模式,也可以充分调动学生的学习兴趣,从而提高学生的学习成绩,有效提升了数学的教学质量。

例如:学生在课后的预习中,时常会感觉到数学知识过于琐碎,没有整体性,一看自己在课堂上做的笔记,更是脑子一片空白,不知道从哪方面复习好。但是老师在课堂教学的整个过程中,进行思维教学的正确引导,使学生能利用思维导图的学习模式进行学习,不仅仅可以帮助学生很快建立数学知识点的构架,在短时间内帮助学生弄清数学知识的脉络,也可以减少学生的学习时间,避免了学生在学习中出现的无用功。

如何培养三年级学生的数学思维导图

运用思维导图模式进行自我评价,帮助老师了解学生学习情况

思维导图具有一定的评价功能,老师可以利用思维导图对学生在课上的学习情况进评价,了解内一个学生的学习情况,为以后的在教学中采取的措施提供了有利的条件。通过培养学生用思维导图进行学习,可以有效帮助老师了解在讲解的过程中学生的领悟能力,给老师一个更直观的画面。

另外,学生在进行思维导图绘制的过程中,也是一个自我评价的过程,帮助学生能够很清晰地认识到自己在学习过程中的不足,在和老师讲解过程中的思维导图进行比较,这样就能使学生很快认识到自己在学习方面存在的问题,并加以改进,这样不仅仅激发了学生的学习热情,更是减少了学生的学习负担,使学生在轻松中提高自己的成绩,从而有效提高了数学的教学质量。

年级数学思维导图 第5篇

巧用思维导图进行知识整理和板书设计:教师可以运用思维导图对全册教材进行书目整理,制作提纲导图。这样的导图可以在学期开始时给学生提供明确的学习方向,既是为学习新知做准备,又能在期末复习时进行双向整合,给学生和老师都带来了帮助。

在板书设计时,教师可以一改以往线形的板书结构,用彩色粉笔勾勒“思维导图”,它把一长串枯燥的信息变成彩色的、容易记忆的、有高度组织性的图画,边讲边展示在黑板上,最终学生以知识块的形式保留在大脑中,这与我们大脑处理事物的自然方式相吻合,便于学生参考、复习、记忆。

如何培养三年级学生的数学思维导图

巧用思维导图进行复习整理在小结和复习时使用思维导图精心备课可以让课堂更主动地掌握在教师手中,知识脉络的清晰有助于教师腾出更多的时间去引导学生理解和掌握知识。对于学生来说,每节课的内容多是零散的,理解难免有些片面,容易导致记忆的混乱和理解的不深刻。如何避免? 对学完的完整一节进行总结,是避免这种情形的有效办法。

巧用思维导图提高笔记效率

思维导图在发明之初被用于记笔记,是一种使左右脑同时工作的全脑思维工具。它借助简单的词汇、线条、颜色、符号、图像来表达信息之间的联系;记的过程简单、快速,但却能及时记录重要信息及其之间的关系,信息量丰富,记录的结果直观、形象,信息之间的关系一目了然,容易理解与记忆。

年级数学思维导图 第6篇

巧用思维导图进行知识整理和板书设计:教师可以运用思维导图对全册教材进行书目整理,制作提纲导图。这样的导图可以在学期开始时给学生提供明确的学习方向,既是为学习新知做准备,又能在期末复习时进行双向整合,给学生和老师都带来了帮助。

在板书设计时,教师可以一改以往线形的板书结构,用彩色粉笔勾勒“思维导图”,它把一长串枯燥的信息变成彩色的、容易记忆的、有高度组织性的图画,边讲边展示在黑板上,最终学生以知识块的形式保留在大脑中,这与我们大脑处理事物的自然方式相吻合,便于学生参考、复习、记忆。

巧用思维导图进行复习整理在小结和复习时使用思维导图精心备课可以让课堂更主动地掌握在教师手中,知识脉络的清晰有助于教师腾出更多的时间去引导学生理解和掌握知识。对于学生来说,每节课的内容多是零散的,理解难免有些片面,容易导致记忆的混乱和理解的不深刻。如何避免? 对学完的完整一节进行总结,是避免这种情形的有效办法。

巧用思维导图提高笔记效率

思维导图在发明之初被用于记笔记,是一种使左右脑同时工作的全脑思维工具。它借助简单的词汇、线条、颜色、符号、图像来表达信息之间的联系;记的过程简单、快速,但却能及时记录重要信息及其之间的关系,信息量丰富,记录的结果直观、形象,信息之间的关系一目了然,容易理解与记忆。

2如何有效利用思维导图模式进行教学

代替了传统的数学笔记形式

思维导图模式是一种新型的教学模式,它简单易懂,将数学的知识复杂变成简单的过程,但是老师在课堂的讲解中对学生进行一定程度上的引导,使学生能够熟练掌握思维导图的学习方式进行学习。老师可以使学生在课堂中利用彩笔在纸上绘制,并且利用不同的形状代表不同的数学元素,以此往下延伸,最后用不同颜色的文字进行说明,但是老师要引导学生在说明的过程中不要用太多的文字,尽量精简。这样的方式可使学生尽量掌握思维导图的学习模式,也可以充分调动学生的学习兴趣,从而提高学生的学习成绩,有效提升了数学的教学质量。

例如:学生在课后的预习中,时常会感觉到数学知识过于琐碎,没有整体性,一看自己在课堂上做的笔记,更是脑子一片空白,不知道从哪方面复习好。但是老师在课堂教学的整个过程中,进行思维教学的正确引导,使学生能利用思维导图的学习模式进行学习,不仅仅可以帮助学生很快建立数学知识点的构架,在短时间内帮助学生弄清数学知识的脉络,也可以减少学生的学习时间,避免了学生在学习中出现的无用功。

运用思维导图模式进行自我评价,帮助老师了解学生学习情况

思维导图具有一定的评价功能,老师可以利用思维导图对学生在课上的学习情况进评价,了解内一个学生的学习情况,为以后的在教学中采取的措施提供了有利的条件。通过培养学生用思维导图进行学习,可以有效帮助老师了解在讲解的过程中学生的领悟能力,给老师一个更直观的画面。

另外,学生在进行思维导图绘制的过程中,也是一个自我评价的过程,帮助学生能够很清晰地认识到自己在学习过程中的不足,在和老师讲解过程中的思维导图进行比较,这样就能使学生很快认识到自己在学习方面存在的问题,并加以改进,这样不仅仅激发了学生的学习热情,更是减少了学生的学习负担,使学生在轻松中提高自己的成绩,从而有效提高了数学的教学质量。

3如何训练孩子的数学思维能力

设计发散性问题进行思维能力的培养与训练

思维,特别是发散思维,在解决问题时,能够从不同的方面、不同的角度想出较多的解决问题的方法。所以,发散思维的培养是从相同的问题寻求不同的答案的思维过程和方法,合理地设计发散性问题,引导学生从各个角度进行分析,就可以培养和训练学生的思维能力。

如在学习“分数应用题”时,我设计了这样一个问题:“某校有住宿生人数为400人,外宿生人数相当于住宿生人数的3/5,外宿生人数是多少?”这种具有发散性的问题,教师不能只注重结果,而是要刻意的指导学生从不同的维度来探讨:①学校住宿生人数为400人,住宿生人数是外宿生人数的5/3,外宿生有多少人?②学校住宿生人数为400人,外宿生人数是全校总数的3/8,外宿生有多少人?③学校住宿生人数为400人,住宿生人数比外宿生人数多2/5,外宿生有多少人?④学校住宿生人数为400人,外宿生人数比住宿生人数少2/5,外宿生有多少人?在人教版小学数学教材中,像这种具有发散性思维的问题非常之多,我们只要加以分析、探索,发散性的思维训练从不同方向思考就能想象出多种可能。只有这样穿插运用才显出效果,才能使学生的发散性思维达到培养和训练。

设计变式性问题进行思维能力的培养与训练

在学习“分数应用题”时,引导学生分析以下三个方面的问题:①一个机器零件厂完成一批零件,第一工作区需要3天完成,第二工作区需要5天完成,如两个工区合作,那么一共需要几天能完成?②一客车从北京到上海需要3小时,一货车从上海到北京需要4小时,如果两车同时相向而行多长时间能够相遇?③妈妈给了小明一些钱,叫小明买铅笔和橡皮,可这些钱只能买8块橡皮或12支铅笔,如果铅笔和橡皮成套购买的话,能卖多少套?这几道题从表面上看之间没有什么关系,他们分别是工程问题、行程问题和单价、总价、数量问题,但是在教师精妙的引导,学生对它们进行分析、研究、比对等,就很容易地概括出他们的共同道理及其互相关系,它们都是工程问题中的特殊形式――归一问题。

然后我又引导学生用简练的数学语言,分析数量之间的关系,有序的表达出自己的思维过程。通过这种变式性问题的训练,既使学生获取了知识又培养和发展了学生的思维。同时让学生体验到了成功的愉悦,又激发了学生对数学课的学习兴趣。大大激起了学生渴求新知的欲望,有利于学生养成探讨、动脑思考的习惯,更有利于促进思维能力的发展。

4小学数学思维能力的培养与训练

鼓励合作交流,促进思维

思维和语言有着密切的联系。爱因斯坦说过:“一个人智力的发展和他形成的概念的方法,在很大程度上是取决于语言的。”思维是对客观事物间接地、概括地反映。虽然语言是思维的外壳,但语言本身具有概括性和间接性的功能。

如果语言不具备这些功能,人的思维,特别是抽象思维就难以进行,古人云:“言有心声,言乃说。”“说”离不开大脑的思维,并可促进大脑的思维。在课堂中我们常常会发现有些孩子叙述解题思路时总是一愣一愣的,有些孩子不乐于说,还有的说得不够完整,等等,这些常常让我们感到很苦恼。因此在数学课堂教学过程中,教师要积极创建一种民主和谐的课堂氛围,让学生敢说、乐说,不断给学生提供“说”的机会,鼓励学生把自己的想法跟同学交流。

设计相近的问题进行思维能力的培养与训练

学生在学习新知识前,教师设计与新知识相近或类似的问题,由易到难,让学生多构思几种方法,以便将各方面的知识融会贯通,开拓思路,使学生的思维能力得以训练。如在讲授“异分母分数加减”时,引入新课时,我先设计了这样几个问题:①整数、小数、同分母分数的加减法法则是怎样的?②整数、小数、同分母分数的相加减时,它们的分数单位相同吗?学生回答后,我又设计了这样相近的问题:③异分母的分数单位相同吗?能直接相加减吗?④异分母分数不能直接加减,应怎么办?

⑤怎样把异分母的分数变为同分母的分数?针对这些类似的问题教师要想方设法打开学生思维的大门,掀起学生思想的涟漪,使学生在积极的思维中进行逐一思考,学生就会很自然地进行类比思维,很容易的找出异分母分数相加减的计算方法。事实上,任何科学成就都是在思维的基础上发展而来的。所以我们的教师要在学生学习知识的过程中,去训练和发展他们的思维能力。古人提出的“学而不思则罔,思而不学则殆”是不无道理的。因此,只有在学习中培养和训练学生的思维能力,才能取得较好的效果、达到预期的目的。

年级数学思维导图 第7篇

巧用思维导图进行知识整理和板书设计:教师可以运用思维导图对全册教材进行书目整理,制作提纲导图。这样的导图可以在学期开始时给学生提供明确的学习方向,既是为学习新知做准备,又能在期末复习时进行双向整合,给学生和老师都带来了帮助。

在板书设计时,教师可以一改以往线形的板书结构,用彩色粉笔勾勒“思维导图”,它把一长串枯燥的信息变成彩色的、容易记忆的、有高度组织性的图画,边讲边展示在黑板上,最终学生以知识块的形式保留在大脑中,这与我们大脑处理事物的自然方式相吻合,便于学生参考、复习、记忆。

巧用思维导图进行复习整理在小结和复习时使用思维导图精心备课可以让课堂更主动地掌握在教师手中,知识脉络的清晰有助于教师腾出更多的时间去引导学生理解和掌握知识。对于学生来说,每节课的内容多是零散的,理解难免有些片面,容易导致记忆的混乱和理解的不深刻。如何避免? 对学完的完整一节进行总结,是避免这种情形的有效办法。

巧用思维导图提高笔记效率

思维导图在发明之初被用于记笔记,是一种使左右脑同时工作的全脑思维工具。它借助简单的词汇、线条、颜色、符号、图像来表达信息之间的联系;记的过程简单、快速,但却能及时记录重要信息及其之间的关系,信息量丰富,记录的结果直观、形象,信息之间的关系一目了然,容易理解与记忆。

年级数学思维导图 第8篇

设计发散性问题进行思维能力的培养与训练

思维,特别是发散思维,在解决问题时,能够从不同的方面、不同的角度想出较多的解决问题的方法。所以,发散思维的培养是从相同的问题寻求不同的答案的思维过程和方法,合理地设计发散性问题,引导学生从各个角度进行分析,就可以培养和训练学生的思维能力。

如在学习“分数应用题”时,我设计了这样一个问题:“某校有住宿生人数为400人,外宿生人数相当于住宿生人数的3/5,外宿生人数是多少?”这种具有发散性的问题,教师不能只注重结果,而是要刻意的指导学生从不同的维度来探讨:①学校住宿生人数为400人,住宿生人数是外宿生人数的5/3,外宿生有多少人?②学校住宿生人数为400人,外宿生人数是全校总数的3/8,外宿生有多少人?③学校住宿生人数为400人,住宿生人数比外宿生人数多2/5,外宿生有多少人?④学校住宿生人数为400人,外宿生人数比住宿生人数少2/5,外宿生有多少人?在人教版小学数学教材中,像这种具有发散性思维的问题非常之多,我们只要加以分析、探索,发散性的思维训练从不同方向思考就能想象出多种可能。只有这样穿插运用才显出效果,才能使学生的发散性思维达到培养和训练。

设计变式性问题进行思维能力的培养与训练

在学习“分数应用题”时,引导学生分析以下三个方面的问题:①一个机器零件厂完成一批零件,第一工作区需要3天完成,第二工作区需要5天完成,如两个工区合作,那么一共需要几天能完成?②一客车从北京到上海需要3小时,一货车从上海到北京需要4小时,如果两车同时相向而行多长时间能够相遇?③妈妈给了小明一些钱,叫小明买铅笔和橡皮,可这些钱只能买8块橡皮或12支铅笔,如果铅笔和橡皮成套购买的话,能卖多少套?这几道题从表面上看之间没有什么关系,他们分别是工程问题、行程问题和单价、总价、数量问题,但是在教师精妙的引导,学生对它们进行分析、研究、比对等,就很容易地概括出他们的共同道理及其互相关系,它们都是工程问题中的特殊形式――归一问题。

然后我又引导学生用简练的数学语言,分析数量之间的关系,有序的表达出自己的思维过程。通过这种变式性问题的训练,既使学生获取了知识又培养和发展了学生的思维。同时让学生体验到了成功的愉悦,又激发了学生对数学课的学习兴趣。大大激起了学生渴求新知的欲望,有利于学生养成探讨、动脑思考的习惯,更有利于促进思维能力的发展。

年级数学思维导图 第9篇

一、班级情况分析:

五(6)班学生对数学基本知识和基本概念掌握都比较好,学生计算能力也较强,有一定的分析问题和解决问题能力,但是学生动手操作能力较弱。解决问题的思路还不够开阔和灵活。全班学生总体智力水平较好,但是一个班级里学生智力差异明显,班级学困生有几个。学生总体学习习惯较好,但是,有少部分学生习惯较差,常常不完成家庭作业,课堂作业也很是马虎潦草,课堂经常不专心听讲,除此之外,个别学生还要做小动作,自由讲话。种种现象,影响了其他同学的学习。所以,提高五年级数学的教学质量任重道远。

二、教材分析:(教材的地位、作用及重点、难点)

“数与代数”领域的内容是本册教材的主要内容,共安排7个单元,分成五部分。第一部分数的认识,有三个单元:第三单元“公倍数和公因数”,第四单元“认识分数”和第六单元“分数的基本性质”。第二部分数的运算,是第八单元“分数加法和减法”。第三部分式与方程,是第一单元的“方程”;第四部分探索规律,是第五单元的“找规律”。第五部分是第九单元“解决问题的策略”。“公倍数和公因数”这一单元的要求大纲的要求比做了调整。第四单元和第六单元是有关分数的意义和基本性质的教学,这两个单元将揭示分数的意义,研究分数的基本性质。公倍数和公因数的知识是对分数进行通分和约分的基础,因此教材在第三单元先教学“公倍数和公因数”。数的运算中,学生已经学习了计算分母小于10的同分母分数加减法,本册教材在揭示分数的意义后教学异分母分数加减法、分数加减混合运算以及应用运算律进行简便计算。学生在探索异分母分数加减计算的过程中,能加深对分数意义的理解,计算的过程又是分数基本性质的运用。分数加减混合运算以及应用运算律进行简便计算的教学,能及时引导学生将整数加法的运算顺序和运算律推广到分数加法中,发展迁移能力。“找规律”教学简单图形平移后覆盖次数的规律。

由于学生对图形平移已有初步体验,也具有一定的探索规律的能力,因此安排这一内容是恰当的,能逐步提高学生探索数学规律的能力。“解决问题的策略”是在用列表和画图的策略解决问题的基础上,教学用倒推(还原)的策略分析数量关系,解决问题。这对发展学生的逆向思维是有价值的。同时,能进一步增强学生运用策略分析问题的意识,提高解决问题的能力。空间与图形”领域安排2个单元,一个单元是图形的认识,即第十单元的“圆”;一个单元是图形与位置。对平面上常见的直线图形的认识经验将有助于学生对曲线图形的认识,这也是学生对平面图形认知结构的一次重要拓展。本单元的教学将进一步提升学生的已有经验,为第三学段学习“图形与坐标”的内容打下基础。“统计与概率”领域安排1个单元,是第七单元的“统计”。教学复式折线统计图,进一步丰富学生对表示数据方式的认识,逐步培养学生根据需要,有效地表示数据的能力。实践与综合应用”领域的内容在本册教材中同样作了富有创意的尝试,共安排四次。这些实践与综合应用有助于学生进一步了解数学与生活的广泛联系,加深学生对所学知识的理解,培养综合运用知识解决问题的能力,获得积极的情感体验。

三、教学目标:(包括知识、智能、情意)

知识与技能:

1、让学生联系已有的知识经验,经历将实际问题抽象成式与方程的过程;经历探索理解分数的意义、性质和分数加、减法计算方法的过程,形成必要的计算技能。

2、让学生在用数对确定位置,认识圆的特征以及探索和掌握圆的周长、面积公式的过程中,获得有关的基础知识和相应的基本技能。

3、经历用复式折线统计图表示相关数据的过程,能进行简单的分析和交流;能按要求完成相关的折线统计图。

数学思考:

1、在认识等式、方程过程中,发展抽象思维,增强符号感。

2、在认识公倍数、公因数等过程中培养良好的思维品质。

3、在认识分数的意义等过程中,发展合情推理与初步的演绎推理能力,不断增强数感。

4、在学习用数确定位置,认识圆等过程中,锻炼形象思维,发展空间观念。

5、在学习统计过程中,进一步增强统计观念,培养统计能力。

解决问题:

1、能从现实情境中发现

并提出一些数学问题,并能用所学的方程、分数、数对等数学知识和方法解决问题。

2、在列方程解决实际问题的过程中,初步掌握其基本思路和方法,体会其特点和价值。

3、在用数对描述简单行走路线和简单的图形变换等活动中,提高合作交流的能力。

4、能应用“倒过来推想”的策略解决一些简单的实际问题。

情感与态度:

1、能积极参与各项数学活动,感受自己在数学知识和方法等方面的收获与进步,提高学习数学的兴趣。

2、在探索数学知识、发现数学规律的过程中,进一步感受数学思考的条理性、严谨性,不断增强自主探索的意识。

3、在运用数学知识和方法解决简单实际问题的过程中,进一步感受数学的价值,感受数学与生活的密切联系。

年级数学思维导图 第10篇

鼓励合作交流,促进思维

思维和语言有着密切的联系。爱因斯坦说过:“一个人智力的发展和他形成的概念的方法,在很大程度上是取决于语言的。”思维是对客观事物间接地、概括地反映。虽然语言是思维的外壳,但语言本身具有概括性和间接性的功能。

如果语言不具备这些功能,人的思维,特别是抽象思维就难以进行,古人云:“言有心声,言乃说。”“说”离不开大脑的思维,并可促进大脑的思维。在课堂中我们常常会发现有些孩子叙述解题思路时总是一愣一愣的,有些孩子不乐于说,还有的说得不够完整,等等,这些常常让我们感到很苦恼。因此在数学课堂教学过程中,教师要积极创建一种民主和谐的课堂氛围,让学生敢说、乐说,不断给学生提供“说”的机会,鼓励学生把自己的想法跟同学交流。

设计相近的问题进行思维能力的培养与训练

学生在学习新知识前,教师设计与新知识相近或类似的问题,由易到难,让学生多构思几种方法,以便将各方面的知识融会贯通,开拓思路,使学生的思维能力得以训练。如在讲授“异分母分数加减”时,引入新课时,我先设计了这样几个问题:①整数、小数、同分母分数的加减法法则是怎样的?②整数、小数、同分母分数的相加减时,它们的分数单位相同吗?学生回答后,我又设计了这样相近的问题:③异分母的分数单位相同吗?能直接相加减吗?④异分母分数不能直接加减,应怎么办?

⑤怎样把异分母的分数变为同分母的分数?针对这些类似的问题教师要想方设法打开学生思维的大门,掀起学生思想的涟漪,使学生在积极的思维中进行逐一思考,学生就会很自然地进行类比思维,很容易的找出异分母分数相加减的计算方法。事实上,任何科学成就都是在思维的基础上发展而来的。所以我们的教师要在学生学习知识的过程中,去训练和发展他们的思维能力。古人提出的“学而不思则罔,思而不学则殆”是不无道理的。因此,只有在学习中培养和训练学生的思维能力,才能取得较好的效果、达到预期的目的。


恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有

Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1

Top