手机版
您的当前位置: 恒微文秘网 > 范文大全 > 专题范文 > 比基本性质教学设计19篇(完整文档)

比基本性质教学设计19篇(完整文档)

来源:专题范文 时间:2024-04-19 15:00:03

比的基本性质的教学设计第1篇一、教学目标1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。2.过程与方法目标:通过学习,培养学生观察、类比的能力下面是小编为大家整理的比基本性质教学设计19篇,供大家参考。

比基本性质教学设计19篇

比的基本性质的教学设计 第1篇

一、教学目标

1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。

二、教学重难点

重点:理解比的基本性质,掌握化简比的方法。

难点:理解化简比与求比值的不同。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:

x珠宝店发生了一起失窃案。小偷在现场只留了一个脚印,柯南根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。

你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?

想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。

【新授】

活动一:

上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。两个数的比表示两个数相除。那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。我们带来看一看12:16等于12÷16,所以比值是12/16约分3/4。

我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。真是一个爱动脑筋的好孩子,请坐。6:8,前项和后项都乘2,就变成了12:16。

同学们还记得我们之前学过的商不变的规律吗?谁来说一说。请你来说。说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的8x2等于12÷16。同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4

活动二:

那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12:16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。开始。

老师看同学们都已经做的很端正了。哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。思路非常清晰,请坐。

利用比和除法的关系来研究6÷8写成比的形式,就是6:8。而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。接下来继续,12÷16写成比的形式就是12:16。同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。

其他小组还有不同的发现吗?二组同学请你来说。说的非常有条理,请坐。6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。

我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。

比的前项和后项同时乘或除以一个相同的数,比值不变。那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。同学们可真棒,这么快就探索出了比的这么重要的规律。其实这就是我们这节课所要学习的内容,比的基本性质。

活动三:

刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?

同桌之间相互合作,来试一试。老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简单的整数比。

观察一下黑板上这些内容,以上就是本节课所要学习的比的基本性质。

【巩固练习】

接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。

神舟五号搭载了两面联合国国旗。你也是啊,长15cm,宽十厘米,另一面长180cm,宽120cm。那这两面联合国国旗长和宽的最简整数比分别是多少呢?同学们赶紧来算一算。老师看,同学们都已经完成了,谁来说一说你是如何计算的?

请你来说思路非常清晰,请坐,长与宽的比就是15:10。因为15和十的最大公约数是五,所以前项和后项同时除以五,等于3:2,这就是它们的最简整数比。而180:120,两个数之间的对大姑约说啥60,所以前项和后项同时除以60。也得到了最简整数比是3:2。

看来这么简单的问题已经难不倒大家了,我们再来看一看1/6:2/9,求它的兑奖比谁来说一说你的思路。

请你来说。说的非常清晰,请多因为分母六和九的最小公倍数是18,所以同时两边前项和后项同时乘18。得到最简比是3:4。

那0.75:2呢?谁来说一说你的想法?请你来说小脑袋可真聪明,请坐。先将0.75化为整数,小数点儿,向右移动两位乘100,所以前项和后项同时乘100,变成75:200。

然后再将它们化简为最简单的整数比。也就是说,当一个比的前项和后项不是整数时,我们要先将它化为整数,再化为最简的整数比。看来同学们对这节课的知识掌握的非常扎实了。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?

班长你手举得最高你来说,他说啊通过本节课学习了比的基本性质,也就是比的前项和后项同时乘或除以一个相同的数,比值不变,0除外。看来啊本节课上特听讲非常认真,请坐!同学们在本节课上听讲非常认真,表现得都非常积极,老师给大家点一个大大的赞,希望同学们继续保持!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识测量一下书桌的长宽,看一看他们的比值是多少。下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

比的基本性质的教学设计 第2篇

教学目标

使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;
通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。

教学重点和难点

1、理解比的基本性质

2、正确运用比的基本性质把比化成最简单的整数比。

教学过程

一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?

师:比与我们学过的那些知识有联系?有什么联系?

师:在以前学习除法时,我们学习了商不变的性质,还学习了分数的基本性质,大家还记得吗?谁来说一说?

师:看来大家对前面学过的知识掌握得比较好。

(导入新课)

二、师:同学们,大家有没有想过,既然比与分数与除法有很多关系,分数中有分数基本性质,除法中有商不变的性质,那么比会不会也有自己的性质呢?如果有,会是什么呢?

师:大家想一想这个猜想有没有研究的价值?

师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。

师:这位同学说得怎样?他不但举了例子来验证,而且为了使自己的例子更有说服力,还举了不同的例子进行验证。非常好,还有谁想汇报?

师:是吗?同学们想不想听一听这位同学的高见?

师:这位同学运用了以前学过的知识也证明了猜测是正确的。非常好!通过大家的验证,看来这个猜想是完全成立的,那大家还有没有其他问题?

师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?

师:大家同意吗?

师:今天我们依靠自己的力量验证了数学中一个非常重要的性质---比的基本性质。请同桌互相说一说什么是比的基本性质?

三、1.师:我们在学分数的基本性质时,利用它化简分数,约分、通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?

师:能举例说明吗?比如180:120化成最简整数比是什么?

师:怎么化简的?根据是什么?

教师根据学生的讲述板书:

180÷120=(180÷60):(120÷60)=3:2

2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40

(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。

师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?

师:看来大家对这部分知识掌握的的确非常好了。

四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?

五、人教版小学数学六年级上册第47--48页练习.十一第1、3

板书设计

比的基本性质

比的前项与后项同时乘或除以同一个数(0除外),比值不变。

180÷120=(180÷60):(120÷60)=3:2 →最简整数比

同时除以这两个数的最大公因数。

比的基本性质的教学设计 第3篇

教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题

教学目标:

1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。

2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。

3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。

教学重点和难点 :

1.理解并掌握比例的基本性质。

2.探究、发现比例的基本性质。

教学准备:多媒体课件

教学过程:

一、复习旧知

1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。

2.师:如何判断两个比能否组成比例?生:化简比、求比值。

3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2

3∶6 =1∶2

所以 6∶10 = 9∶15 生2:
因为 20∶5 = 4∶1

28∶7 = 4∶1

所以 20∶5=28∶7.

(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。

[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]

二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?

?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。

2.认识比例的项

(1)观察这几组比例,它们有什么共同点?

说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。

(2)结合6:3=4:2具体说一说

在比例6:3=4:2中,组成比例的四个数“

6、

3、

4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。

(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。

3.探究比例的基本性质

认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。

(2)6×2=3×4,两个外项的积等于两个內项的积。

4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。

(1)与同桌每人写出一个比例,交换验证。

(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结

其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?

(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。

8.教学“试一试”

(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。

(2)应用比例的基本性质判断能否组成比例

(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]

三、巩固练习

1.完成“练一练”第1题。

(1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。

追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。

学生独立完成,教师巡视。

交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?

2、练习七第2题

(1)下面四个数

5、

7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?

说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。

(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?

3.任意从1-10中,写出4个数,判断能否组成比例?

与同桌合作完成。一个写,另一个判断。

4.我是小法官,对错我来判。

(1)在比例中,两个外项的积减去两个内项的积,差是0。

( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。

( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。

( ) 5.完成“练一练”第2题

(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。

(2)学生独立完成第2小题。

四、全课总结

今天我们学习了什么内容?你有什么收获?

比的基本性质的教学设计 第4篇

教学目标:

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学准备:多媒体课件

整体设计说明:

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

教学过程

一、旧知铺垫导入。

1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

2、比和比例有什么区别?

设计意图:注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

四、探究比例的基本性质

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)

3、根据比例的基本性质,在( )里填上适当的数。(投影出示)

六、全课总结:这节课你有什么收获。

设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15

比的基本性质的教学设计 第5篇

教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题

教学目标:

(一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;

(二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。

教学过程:

(一)复习旧知识,做好新课铺垫

1、提问:①什么叫做比?

②除法、分数、比之间有什么联系吗?

根据学生的回答板书。

被除数÷除数==前项:后项

2、观察下面的每组题目,你有什么发现吗?

第一组:12÷4=3

(12×3)÷(4×3)=3 商不变

(12÷2)÷(4÷2)=3

第二组:=3

==3 分数值不变

==3

先让学生分组讨论,再组织全班交流。

根据交流情况适时板书

被除数÷除数==前项:后项

商不变性质 分数基本性质

[评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]

(二)新课,概括比的基本性质。

1、再观察一组题目

例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。

填写下表,并把比值相等的比填入等式。

质量/g 体积/cm3 质量和体积的比值

第一瓶 4 5

第二瓶 16 20

第三瓶 50 50

第四瓶 40 50

( ):( )=( ):( )=( ):( ) }比值不变

1、学生独立填写后。

2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?

学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。

引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)

问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。

3、上面三个相等的比哪个更简单一些?

学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。

(三)利用比的基本性质化简比

例4:把下面各比化成最简单的整数比。

(1)12:18 (2) (3)1.8:0.09

讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?

根据学生的回答,整理后板书。

板书后追问:

12:18=(12÷6):(18÷6) 为什么要同时除以6?

=2:3

=(×12):(×12) 为什么要同时乘以12?

=10:9

1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?

=180:9

=20:1

小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。

[评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]

四、沟通联系,深化认识

1、指导完成“练一练”

做第1题。学生独立填完后,要求说说是怎样想的?

做第2题。学生黑板上板演,集体订正时说出做每道题的理由。

2、指导完成练习十三第6~9题

做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。

做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。

做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。

做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;
75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。

五、课堂总结:

今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?

教学评析:

1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;
又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。

2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。

3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。

比的基本性质的教学设计 第6篇

教学目标:

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重点:

探索并掌握比例的基本性质。

教学难点:

根据乘法等式写出正确的比例。

教学准备:

多媒体课件

整体设计说明:

本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。

教学过程

一、旧知铺垫导入。

1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

2、比和比例有什么区别?

【设计意图】

注重从学生已有的知识出发,为新课做好铺垫。

二、自主探究

过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。

【设计意图】

组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。

三、反馈练习。

指出下面比例的外项和内项。(投影出示)

先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。

【设计意图】

这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。

四、探究比例的基本性质

(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。

(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。

(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。

(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。

【设计意图】

这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。

五、巩固练习

1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。

2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。

(学生独立完成后,用展示台展示)

3、根据比例的基本性质,在()里填上适当的数。(投影出示)

六、全课总结:

这节课你有什么收获。

【设计意图】

关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。

七、拓展练习:把下面的等式改写成比例。

3×40=8×15

比的基本性质的教学设计 第7篇

教学目标:

1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。

2、培养学生的观察能力、判断能力

教学重点:引导学生观察、讨论、试算,探究比例的基本性质。

教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。

教学过程:

一、激趣导入

1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)

2、还是让老师给你点提示吧!

课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。

3、现在知道是什么了吧!课件出示:扑 克牌

(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)

二、探究新知

(一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K

1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。

2、学生汇报写出的比例并说明理由。

3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)

4、就学生汇报的比例,找出内项与外项。

(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)

(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)

1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)

课件出示:

冠军攻略

参赛者:王老师,全班同学

规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)

2、第一轮:6、8、9、12

(老师比学生提前写完,并由学生验证,得出老师胜)

第二轮:3、5、4、8

(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3

(老师比学生提前写完比例,并由学生验证,老师胜)

(设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)

3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?

4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”

5、师讲解如何很快的判断4个数能否组成比例。

(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)

看样子,同学们对新知掌握的不错,愿意接受挑战吗?

(三)练习运用。

1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例

6∶3和8∶50 2∶2.5和4∶50

2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?

指出:2.4与40的乘积等于1.6与60的乘积。

三、课堂巩固,练习提升

1、用你喜欢的方法来判断哪组中的两个比能否组成比例。

(1)14:21和6:9 (2)3/4:1/10和15/2:1

(3)9:12和12:15 (4)1.4:2和7:10

2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)

3、根据比例的基本性质,在括号里填上合适的数。

8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9

四、实践活动题

8:A=B:1.5,那么A和B可能是( )和( )

如果A是小数,那么A可能是( ),B可能是( )。

如果A-B=1,那么A可能是( ),B可能是( )

如果A+B=7,那么A可能是( ),B可能是( )

(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)

五、全课总结

通过这节课的学习,你有哪些收获?

比的基本性质的教学设计 第8篇

教学目标:

1、使学生认识比例的“项”以及“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。

3、通过自主学习,让学生经历探究的过程,体验成功的快乐。

教学重点:

理解并掌握比例的基本性质。

教学难点:

引导观察,自主探究发现比例的基本性质

设计理念:

本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

教学过程:

一、从知识的矛盾冲突中导入并引入。

制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)

师:xx你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)

你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)

二、探索发现新知。

1.引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)

学生回报,师完成板书:

(注意板书的时候教师的手势要指明确到位)

2、练习:请指出下列比例的两个外项和内项各是多少?

80:2=200:56:10=9:151/2:1/3=6:40.2:2.5=4:50

2.4:1.6=60:40

3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。

带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。

4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)

回到板书例题验证:两个外项的积是:3×24=72

两个内项的积是:8×9=72

5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。

6、完成板书:在比例里,两个外项的积等于两个内项的积

如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。

三、基本练习。

1.应用比例的基本性质,判断下面两个比是否能组成比例。

(1)6:3和8:5

(2)1∶5和0.8∶4

(3)1/3:1/4和12∶9

(4)1.2:3/和4/5:5

(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18

两个内项的积是3×8=24,18≠24,所以不能组成比例)

2、在括号里填上适当的数

(1)12:3=():5

(2)():1/3=1/4:1/6

(3)0.2:0.6=6:()

(4)4:3=80:()

3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?

4、把5、3、4、8这四个数换掉其中的一个,组成比例。

4、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是()。

5、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。

四、全课总结:

谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)

比的基本性质的教学设计 第9篇

教学目标:

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

教学重点:

1、理解比的基本性质。

2、运用比的基本性质进行化简比。

一、探究新知

(一)比的基本性质

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)

(1)4人小组交流

(2)全班交流

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?

3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

(二)化简比---完成练习题(后附)

1、小组交流

2、全班交流

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

二、巩固练习

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习

3:8=(3+6):(8+)

(让学生分小组讨论方法)

三、课堂总结

这节课有哪些收获?师生共同总结。

()年()班姓名

比的基本性质小研究

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

方法一

方法二

方法三

方法四

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号

我的方法

(写出过程)

我的发现:

比的基本性质的教学设计 第10篇

教材分析

1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

学情分析

学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。

因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

教学目标

经历探索分数基本性质的过程,理解分数基本性质。

能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点和难点

理解分数基本性质,能运用分数基本性质转化分数。

教学过程

一、复习导入

二、探究新知

实践操作,探究规律

观察发现:初步概括分数基本性质

括归纳分数基本性质

三、课堂练习

四、课堂小结

出示复习题口答卡片,复习商不变的规律、分数与除法的关系。

讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

提出问题:这些分数都相等吗?

观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

1、课本P43的“试一试”

2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4

通过这节课的学习、你学会了那些知识

口答

小组讨论

拿出准备好的圆形纸片,折一折,画一画、涂一涂

小组讨论、交流

小组讨论、交流

做练习,完成后集体交流。

说说,读分数基本性质

复习旧知,为学习新知识作铺垫。

将例1改编成故事提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。

引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

对本节课的所学知识的回顾,及所学知识点的总结。

板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

教学反思:

分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。

在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。

比的基本性质的教学设计 第11篇

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0.24=

0.288÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?

媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的`基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

五、板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

比的基本性质的教学设计 第12篇

【教学内容】

义务教育教科书六年级上册第50-51页。

【教学目标】

1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。

2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。

【教学难点】

理解并掌握比的基本性质。

【教具学具】

课件。教学过程:

一、回顾旧知。

1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”

2、比与除法和分数有什么关系?

比前项:(比号)后项

比值除法

被除数÷(除号)除数商分数

分子-(分数线)分母分数值

二、探究新知。

探究一:比的基本性质

1、同学看这个除法算式:

它们是正确的吗?为什么?运用了除法的什么性质?

2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?

3、根据比与分数的关系,我们还能怎么研究比的规律?

【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】

4、即时练习,强化巩固

在比的基本性质中,大家觉得要注意什么?让我们一起来看看:

(1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)

(2).判断并说明理由。

(1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5

探究二:根据比的性质我们能做什么?(化简比)

1、明确什么是“最简整数比”。出示一些比,让学生说说哪些是整数比,哪些是最简整数比。

2、出示例题,明确问题。

例1:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?

分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)

学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。

那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。

3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?

出示例题,全班讨论猜想。学生独立完成。

集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”

1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8

探究三:一个比中有分数,又有小数该怎么化简呢?

3出示0.125:,学生讨论,汇报结果。

8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】

三、强化新知,达标检测。

通过数学课本51页“做一做”,强化认识。32:1648:400.15:0.35173::66128

【设计意图:强化训练】

四、总结评价

这节课你有什么收获?还有什么疑问?

比的基本性质的教学设计 第13篇

一、教学目标

1.知识与技能目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2.过程与方法目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3.情感态度价值观目标:通过教学,使学生养成与人合作的意识,并能与他人互相交流思维的过程和结果。

二、教学重难点

重点:理解比的基本性质,掌握化简比的方法。

难点:理解化简比与求比值的不同。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是比的基本性质,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

同学们,你们都喜欢看名侦探柯南吗?这一天柯南又破案了,我们一起来看一看:

某珠宝店发生了一起失窃案。小偷在现场只留了一个脚印,柯南根据脚印的长为25cm,就果断推断出了小偷的身高是175cm。

你们想知道他是如何推断出来的吗?原来根据科学的验证,人的脚长比人的身高等于1:7,你们知道柯南到底运用了怎样的数学知识来破获此案的呢?

想不想成为像柯南一样的小神探老师,相信通过这节课的学习你们能了解其中的奥秘,这节课就让我们一起走进数学王国,去探究比的意义。

【新授】

活动一:

上节课我们一起认识了比,谁来向大家分享一下比到底代表着怎样的意义呢?请你来说,对学过的知识掌握的非常扎实,请坐。两个数的比表示两个数相除。那我们一起来看一看这个6:8就等于对,6÷8等于6/8,能够约分等于3/4,所以比值是3/4。我们带来看一看12 : 16等于12÷16,所以比值是12 / 16约分3/4。

我们一起看一看,这两个比它们之间有什么区别和联系呢?请你来说观察的非常细致,它们的比值相等,谁还有别的发现,请你来说。真是一个爱动脑筋的好孩子,请坐。6:8,前项和后项都乘2,就变成了12 : 16。

同学们还记得我们之前学过的商不变的规律吗?谁来说一说。请你来说。说的非常准确,请坐,被除数和除数同时乘或除以一个不为零的数,商不变。那我们比如6÷8被除数和除数同时乘2,也就是6x2÷括号里面的8x2等于12÷16。同样的,我们的被除数和除数同时除以2,也就是6÷8,等于(6÷2)÷(8÷2)=3÷4

活动二:

那我们比中是否有类似的规律呢?我们一起来探究一下请同学们以四人为一组思考并注意以下几个问题,根据比与除法之间的关系,以及除法商不变的规律,来思考6:8与12 : 16之间有怎样的关系?二6:8与3:4之间又有什么关系呢?你还有什么发现?带着这几个问题,先独立思考,再小组合作,老师相信小组的力量是强大的,讨论完成以端正的坐姿来自于老师,看哪个小组的发现又多又好。开始。

老师看同学们都已经做的很端正了。哪位同学愿意向大家分享一下你们小组的讨论成果?老师看一组的同学手举的像小树林一样,1#3同学请你来说。思路非常清晰,请坐。

利用比和除法的关系来研究6÷8写成比的"形式,就是6:8。而(6x2)÷(8x2)写成比的形式就是按括号里面的6×2:括号里面的8x2。又因为我们两个数的比表示两个数相除,而它们之间是相等的关系,除法算式是相等的关系,所以比值也相等,我们用等号来连接。接下来继续,12÷16写成比的形式就是12 : 16。同样他们除法算式是相等的关系,由此得到它们之间的比值也是相等的,所以用等号来连接。

其他小组还有不同的发现吗?二组同学请你来说。说的非常有条理,请坐。6÷8写成比的形式,就是6:8而6÷2,除以括号里面的8÷2,写成比的形式就是括号里面的6÷2,比括号里面的8÷2。又因为这两个除法算式结果相同,也就是啊,它们的比值是相等的,所以用等号来连接。最后3÷4用比的形式就是按3:4,同样比值相等,我们继续用等号来连接。

我们一起仔细观察一下我们刚刚的探索的过程,你有哪些发现?又能得到怎样的结论呢?谁来试一试?请你来说多么了不起的发现,同学们掌声送给这位同学。

比的前项和后项同时乘或除以一个相同的数,比值不变。那同学们想一想,这个相同的书能为零吗?对呀,当然不能为零,因为在除法算式中,除数不能为零。同学们可真棒,这么快就探索出了比的这么重要的规律。其实这就是我们这节课所要学习的内容,比的基本性质。

活动三:

刚刚我们是根据比和除法之间的关系探索比的基本性质,你能根据比和分数的关系研究比中的规律吗?

同桌之间相互合作,来试一试。老师看同学们都已经探索完了,那你们对比的基本性质理解的怎么样啦?在生活中我们根据比的基本性质,可以将比化成最简的整数比,前项和后项只有公因数1是最简单的整数比。

观察一下黑板上这些内容,以上就是本节课所要学习的比的基本性质。

【巩固练习】

接下来老师就来考一考大家,同学们敢不敢接受老师的挑战?这么自信,请看大屏幕。

神舟五号搭载了两面联合国国旗。你也是啊,长15cm,宽十厘米,另一面长180cm,宽120cm。那这两面联合国国旗长和宽的最简整数比分别是多少呢?同学们赶紧来算一算。老师看,同学们都已经完成了,谁来说一说你是如何计算的?

请你来说思路非常清晰,请坐,长与宽的比就是15 :10。因为15和十的最大公约数是五,所以前项和后项同时除以五,等于3:2,这就是它们的最简整数比。而180 : 120,两个数之间的对大姑约说啥60,所以前项和后项同时除以60。也得到了最简整数比是3:2。

看来这么简单的问题已经难不倒大家了,我们再来看一看1/6:2/9,求它的兑奖比谁来说一说你的思路。

请你来说。说的非常清晰,请多因为分母六和九的最小公倍数是18,所以同时两边前项和后项同时乘18。得到最简比是3:4。

那0.75 :2呢?谁来说一说你的想法?请你来说小脑袋可真聪明,请坐。先将0.75化为整数,小数点儿,向右移动两位乘100,所以前项和后项同时乘100,变成75 : 200。

然后再将它们化简为最简单的整数比。也就是说,当一个比的前项和后项不是整数时,我们要先将它化为整数,再化为最简的整数比。看来同学们对这节课的知识掌握的非常扎实了。

【课堂小结】

不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?

班长你手举得最高你来说,他说啊通过本节课学习了比的基本性质,也就是比的前项和后项同时乘或除以一个相同的数,比值不变,0除外。看来啊本节课上特听讲非常认真,请坐!同学们在本节课上听讲非常认真,表现得都非常积极,老师给大家点一个大大的赞,希望同学们继续保持!

【作业布置】

那接下来老师老师给大家布置一个小任务,课下去利用今天所学习知识测量一下书桌的长宽,看一看他们的比值是多少。下节课一起来交流讨论一下。

本节课就先上到这,下课,同学们再见!

尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

比的基本性质的教学设计 第14篇

教学目标:

1.认识比例各部分名称,理解比例的基本性质。

2.能根据比例的基本性质,正确判断两个比能否组成比例。

3.在自主探究、观察比较中,培养学生分析、概括能力。

教学重、难点:

重点:理解比例的基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学过程:

一、引入

同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)

对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)

对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?

生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。

二、探索新知

师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?

(给出数据:20cm、10cm,30cm、15cm)师:有道理,根据这两幅图,你还能写出哪些比例?(生独立写)

反馈板书:

20∶30=10∶15

30∶15=20∶10

10∶15=20∶30

20∶10=30∶15讲解:内项与外项

刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)

观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈:在比例里,两个内项的积等于两个外项的积。

师:同意吗?

师:说说你是怎么想的,(板书:20×15=30×10)

师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?

学生写并小组内交流。

谁再来说一说这一发现?

师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)

如果a∶b=c∶d,那么这个规律可以表示成什么?

学生口答,教师板书;a×d=b×c如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?

说一说1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。

313115∶和∶511133()×()=()()×()=()填一填

根据比例的基本性质,在括号里填上合适的数。

2∶3=4∶()(口答)再出示:

2∶4=3∶()()∶3=4∶2让学生填一填为什么都填的是6?

4、6可以组成不同的比例,还可以组成哪些比例呢?学生自己独立写一写。

反馈:有什么好方法能写的又对又快。

三、课堂小结

比的基本性质的教学设计 第15篇

教学内容:

人教版小学六年级上册数学教材第45 、46页内容及练习十一的第4—7题。

教学目标:

知识与技能:

1、理解比的基本性质。

2、利用比的基本性质来正确化简比。

过程与方法:

1、利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主学习,掌握化简比的方法并会化简比。

情感态度和价值观:

1、培养学生的抽象概括能力,渗透转化的数学思想。

2、初步渗透事物是普遍联系的辩证唯物主义的思想,

教学重点:

理解比的基本性质。

教学难点:

利用比的基本性质正确化简比。

教学过程:

一、听算练习:

求比值:
2:0.5 4:1 20:5 200:50

90:60 9:6 3:2 0.3:0.2

两个同学板演:写出过程

(设计意图:加强基础训练,巩固求比值的练习,为本节课比的基本性质做铺垫。)

汇报答案时强调求比值是用比的前项除以后项,所得的商。

二、新授:

1、观察黑板上的算式,你有什么发现:

生的发现:前面四个比的比值相等,后面四个比的比值相等。

板书算式:
2:0.5 = 4:1 = 20:5 = 200:50 = 4

(2×2) :(0.5×2) (20×10):(5×10)

90:60 = 9:6 = 3:2 = 0.2:0.3 = 1.5

(90÷10):(60÷10) (3÷10):(2÷10)

观察第一组比,他们的比值是相等的,前项和后项有什么变化?

以前两个比和后两个比为例,找同学说出自己的发现。

教师添加板书,渗透格式的书写。

让学生多说自己的发现,从①到③,从①到④,从②到④等,

然后小结规律:比的前项和后项同时乘同一个数,比值不变。

2、观察第二组比,发现规律:方法同上。

比的前项和后项同时除以同一个数(0除外),比值不变。

(有分数的基本性质做定势,0除外这个关键点学生不会忘记,在这里只须问一句为什么?就可以将这个要点突破)

3、将上面两个规律综合小结:

比的前项和后项同时乘或除以同一个数(0除外),比值不变。

这叫做比的基本性质。

4、出示课题:(比的基本性质)

(设计意图:分数的基本性质在五年级下册刚刚学过,是教材的重要内容,约分通分都用到分数的基本性质,学生记忆很深刻,故没在课前复习分数基本性质。)

(有直观的等式作媒介,有分数的基本性质做迁移,通过比值相等,观察比的前项后项的变化规律,学生很容易发现规律,并且语言的组织应该没有问题。根据学生的年龄特点也为了突破教材的重难点,这里需要学生多观察、多说,充分理解比的基本性质。教师补充板书,渗透化简比的格式规范)

5、理解概念,找出关键词。

6、利用比的基本性质做出准确判断:

① 8:10 =(8+10):10+10 = 18:20 ( )

② 12:16=(12÷6):(16 ÷ 4)= 2:4 ( )

③ 0.8:1=(0.8×10):(1×10)=8:10 ( )

④ 比的前项乘3,要使比值不变,比的后项应除以3。

( )

(设计意图:第一道题考察“同乘”这个关键词,这里是同加一个数,比值是变化的;第二个考察“同一个数”这个关键词,前项后项同时除的不是一个数,第一个除的是6,第二个除的是4,因此比值也是变化的;第三道题是正确的;第四道考察的是同乘和同除。此处的练习是为了巩固比的基本性质,突破本节课的重点与难点。)

7、学习了比的基本性质,你联想到了我们以前学过的那部分知识?

学生很容易想到这些内容,比的基本性质,商不变性质。联系旧知,形成系统的知识体系。我们刚刚学过分数、除法、比的联系,他们的性质能联系在一起也就不足为奇了。

问:比的基本性质在数学上有什么用途?(约分、通分)

商不变的性质有什么用途?(1.2÷0.3 500÷10 )

那么我们刚刚学过的比的基本性质有什么用途呢?

学生已经预习过,故学生应该知道利用比的基本性质可以化简比。

8、观察黑板上的两组等式,哪一个比最简单?学生回答,教师板书:

像1:4 3:2这样的比叫做最简整数比。

请学生举出最简比的例子,多找几个学生回答,

学生在举例的同时加深了对最简整数比的认识。

由学生总结。最简整数比的特点:

学生总结,教师板书。

1、比的前项后项必须都是整数。

2、比的前项后项必须是互质数。

以后我们写出的比应该都化简成最简整数比。

9、化简比:

出示例题:“神州”五号搭载了两面联合国旗,一面的长是15厘米,宽是10厘米,另一面长是180厘米,宽是120厘米。写出这两面旗长与宽的比,并化成最简整数比。

学生口答写出比:
15:10 180:120

由于学生已经预习,因此化简的过程教给孩子。尝试练习,找同学板演:

汇报,学生讲解化简过程,教师规范化简格式。

化简分数比:
1/6 : 2/9 7/12 :3/8

化简小数比:
0.5:0.4 0.75:0.25

这部分内容的学习交给孩子自己,发挥学生的主体作用,学生尝试练习,学生讲解。最后让学生讨论化简整数比,分数比,小数比的方法。

化简整数比时,比的前项和后项同时除以它们的最大公因数。

化简分数比时,比的前项和后项同时乘分母的最小公倍数。

化简小数比时,先把小数比化成整数比,然后再化成最简比。

(设计意图:这一环节的教学充分发挥学生的主体作用,把课堂还给孩子,同时也检查孩子的预习效果,最后小结方法,渗透最优化的数学思想)

10、小结本节课的收获:

三、巩固练习:

1、等比接龙:

2:3=20:30=4:6=200:300=( )=( )=( )=( )

100:50=40:20=( )=( )= ( )=( )

2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是( ),工效比是( )。

3、甲是乙的1.2倍,甲与乙的比是( )。

4、甲是乙的1又1/4倍,甲与乙的比是( )。

比的基本性质的教学设计 第16篇

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1、理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2、在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3、初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、复习引入

1、师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2、你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3、你还记得分数的基本性质吗?举例说明。

【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1、师:我们知道,比与除法、分数之间存在着极其密切的"联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2、学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3、根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1、教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言

2、集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;
根据比值验证。

3、全班验证。

比的基本性质的教学设计 第17篇

教材分析

《比的基本性质》属于数学概念教学。它是在学生学习了商不变的性质、分数的基本性质及理解比的意义,能正确求比值的基础上进行教学的。它既是对前面所学知识的巩固应用,也为学生今后学习比例打下坚实的基础。本节课的知识目标是:使学生理解和掌握比的基本性质,并会应用这个性质把比化成最简单的整数比。能力目标是:通过学习,培养学生的迁移类推能力和抽象概括能力。情感态度价值观目标:教学中,鼓励学生在教师创设的情境中主动地建构概念,应用概念,从而培养学生的探究意识,在活动中体验成功的快乐。本课的教学重点是理解比的的基本性质,教学难点是应用比的基本性质化简比。

学情分析

学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想--验证--应用,让学生理解比的基本性质,应用性质化简比。

教学目标

1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

2、培养学生的抽象概括能力。

3、渗透转化的数学思想。

教学重点和难点

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:掌握化简比的方法。

教学过程

活动一

1、出示例1,出示例1,让学生解答。

2、教学比例的基本性质

(1)、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

①根据分数、比、除法的关系验证。

②根据比值验证。

......

③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

④总结比的基本性质,为什么强调0除外呢?

活动二

1、教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

2、根据你自己的理解,能说一说什么是最简单的整数比吗?

(前项和后项是互质数。)

3、请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。

让学生试做后,总结方法。

4、出示例1(2)①1/6:2/9②0.75:2

学生先讨论方法,再试做。

5、小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

6、化简比与求比值有什么不同?

7、质疑

活动三

1、做一做46页化简比。

2、48页第4题

教学反思

比的基本性质这一课,我充分利用学生的已有知识,从把握新旧知识的相互联系开始,从分析它们的相似之处入手,通过让学生联想、猜测、观察、类比、对比、类推、验证等方法探讨“比的基本性质”这一规律。由于在推导比的基本性质时要用到比与除法、分数的联系,除法的商不变性质,分数的基本性质等知识,因此教学新课时对这些知识做了一些复习,引导学生回忆并运用这两条性质,为下一步的猜想和类推做好了知识上的准备。事实也证明,成功的铺垫有利于新课的开展。学生通过比与除法、分数的联系,通过类比,很快地类推出比的基本性质。这样一来节省了很多的时间,二来也让学生初步感知了新知识。整节课无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,不论是学生对比的基本性质的语言描述,还是对化简比的方法的总结,都留下了学生成功的脚印。同时采用讲练结合、说议感悟、对比总结、质疑探索、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。学生学的轻松,教师教的愉快!

注重练习题的设计,使学生积极主动的学习。练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。

“兴趣是的老师。”小学生对数学的迷恋往往是从兴趣开始的,由兴趣到探索,由探索到成功,在成功的愉快中产生新的兴趣,推动数学学习不断取得成功。但是数学的抽象性、严密性和应用的广泛性又常使学生难以理解,甚至望而却步。因此本节课教师从激发学生的学习兴趣入手,引导学生用一系列的猜想来提高兴趣,增强数学的趣味性,从而引发学生探求新知的欲望。有了兴趣做支撑,后面的新课学习就积极主动。

教学中我着力体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人,力求使学生在创新精神、实践能力及情感态度方面得到均衡发展,但课中也存在遗憾,在以后教学中力求让学生在知识点和概念上表述更准确。

比的基本性质的教学设计 第18篇

教材分析

比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。

教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。

学情分析

学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。

教学目标

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重点和难点

教学重点:理解比的基本性质。

教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。

比的基本性质的教学设计 第19篇

教学目标:

1.认识比例各部分名称,理解比例的基本性质。

2.能根据比例的基本性质,正确判断两个比能否组成比例。

3.在自主探究、观察比较中,培养学生分析、概括能力。

教学重、难点:

重点:理解比例的基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学过程:

一、引入

同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)

对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)

对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?

生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。

二、探索新知

师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?

(给出数据:
20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)

反馈板书:
20∶30=10∶15

30∶15=20∶10

10∶15=20∶30

20∶10=30∶15 讲解:内项与外项

刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)

观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈:
在比例里,两个内项的积等于两个外项的积。

师:同意吗?

师:说说你是怎么想的,(板书:20×15=30×10)

师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?

学生写并小组内交流。

谁再来说一说这一发现?

师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)

如果a∶b=c∶d,那么这个规律可以表示成什么?

学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?

说一说 1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。

313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填

根据比例的基本性质,在括号里填上合适的数。

2∶3=4∶( )(口答) 再出示:

2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?

看来用

2、

3、

4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。

反馈:有什么好方法能写的又对又快。

三、课堂小结

恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有

Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1

Top