手机版
您的当前位置: 恒微文秘网 > 范文大全 > 专题范文 > 圆知识点总结18篇(全文完整)

圆知识点总结18篇(全文完整)

来源:专题范文 时间:2024-02-20 09:38:02

圆的知识点总结第1篇各位热爱数学的初中同学们,的小编通过认真分析和详细整合,为大家带来了丰富营养的数学知识大餐之初中知识点学习口诀,请同学们认真记忆,做好笔记啦。更多更全的初中知识资讯尽在。圆中比例线下面是小编为大家整理的圆知识点总结18篇,供大家参考。

圆知识点总结18篇

圆的知识点总结 第1篇

各位热爱数学的初中同学们,的小编通过认真分析和详细整合,为大家带来了丰富营养的数学知识大餐之初中知识点学习口诀,请同学们认真记忆,做好笔记啦。更多更全的初中知识资讯尽在。

圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

圆的知识点总结 第2篇

1、定义:圆是到定点的距离等于定长的点的集合

2、点与圆的位置关系:

如果⊙O的半径为r,点P到圆心O的距离为d,那么

点P在圆内,则dr;

点P在圆上,则dr;

点P在圆外,则dr;反之亦成立。

圆的对称性

一、圆是中心对称图形,圆心是它的对称中心。

定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

圆心角的度数与它所对的弧的度数相等。

二、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

圆周角

定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角

定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。

定理:直径(或半圆)所对的圆周角是直角。90o的圆周角所对的弦是直径。

确定圆的条件

结论:不在同一条直线上的三点确定一个圆

三角形的外接圆(三角形的外心):三角形的外心是三角形中3边垂直平分线的交点,三角形的外心到三角形各顶点的距离相等。

注:直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半。

直线与圆的位置关系

一、三种位置关系:相交、相切、相离

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

直线l与⊙O相交,则dr;

直线l与⊙O相切,则dr;

直线l与⊙O相离,则dr;反之亦成立。

二、圆的切线的性质及判定

定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

两种方法:连半径,证垂直;作垂直,证半径

定理:圆的切线垂直于过切点的半径

三角形的内切圆(三角形的内心):三角形的内心是三角形中3条角平分的交点,三角形的内心到三角形各边的距离相等。

注:求三角形的内切圆的半径通常用面积法,特殊地,直角三角形内切圆的半径=a?b?c(其中c为斜边) 2

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

圆与圆的位置关系

五种位置关系:外离、外切、相交、内切、内含

阅读材料:如果两个圆相切,那么切点一定在连心线上相交两圆的连心线垂直平分两圆的公共弦。

正多边形与圆

各边相等、各角也相等的多边形叫做正多边形。

正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。

注:与正多边形有关的计算

圆的知识点总结 第3篇

圆是以圆心为对称中心的中心对称图形。那么接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

1、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

2、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应 的其余各组量都相等

3、定理 一条弧所对的圆周角等于它所对的圆心角的一半

4、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

5、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

6、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

7、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

8、 ①直线L和⊙O相交 dr

9、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

10、切线的性质定理 圆的"切线垂直于经过切点的半径

圆的知识点总结 第4篇

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

圆的知识点总结 第5篇

大家都知道:圆是定点的距离等于定长的点的集合。接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

1、圆的内部可以看作是圆心的距离小于半径的点的集合

2、圆的外部可以看作是圆心的距离大于半径的点的集合

3、同圆或等圆的半径相等

4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

5、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

6、到已知角的两边距离相等的点的轨迹,是这个角的平分线

7、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

8、定理 不在同一直线上的三点确定一个圆。

9、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

10、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心, 并且平分弦所对的两条弧  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

11、推论2 圆的两条平行弦所夹的弧相等

大家看过初中数学知识点总结之圆后,想必同学们都已经熟记了吧。接下来还有更多更全的初中数学知识讯息尽在。

圆的知识点总结 第6篇

点和圆的位置关系

①点在圆内<=>点到圆心的距离小于半径

②点在圆上<=>点到圆心的距离等于半径

③点在圆外<=>点到圆心的距离大于半径

过三点的圆不在同一直线上的三个点确定一个圆。

外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

①直线l和⊙O相交<=>d

②直线l和⊙O相切<=>d=r;

③直线l和⊙O相离<=>d>r。

圆的知识点总结 第7篇

1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

4.圆是定点的距离等于定长的点的集合。

5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。

6.不在同一直线上的三点确定一个圆。

7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

10.经过切点且垂直于切线的直线必经过圆心。

11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

12.切线的性质定理圆的切线垂直于经过切点的半径。

13.经过圆心且垂直于切线的直线必经过切点

14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

15.圆的外切四边形的两组对边的和相等外角等于内对角。

16.如果两个圆相切,那么切点一定在连心线上。

17.

①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交d>R-r)

④两圆内切d=R-r(R>r)

⑤两圆内含d=r)

18.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。

21.内公切线长= d-(R-r)外公切线长= d-(R+r)。

22.定理一条弧所对的圆周角等于它所对的圆心角的一半。

23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

圆的知识点总结 第8篇

大家要熟记:圆的外切四边形的两组对边的和相等。那么接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

推论1 经过圆心且垂直于切线的直线必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

弦切角定理 弦切角等于它所夹的弧对的圆周角

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

初中数学知识点总结之圆的知识已经总结完毕,同学们都已经掌握要领了吧。接下来还有更多更全的初中数学知识讯息尽在。

圆的知识点总结 第9篇

定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离<=>d>R+r两圆外切<=>d=R+r两圆相交<=>R-r=r)

两圆内切<=>d=R-r(R>r)两圆内含<=>dr)

圆的知识点总结 第10篇

①直线和圆无公共点,称相离。

AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1、由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2、如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

圆的知识点总结 第11篇

不在同一直线上的三点确定一个圆。

垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

圆是以圆心为对称中心的中心对称图形

圆是定点的距离等于定长的点的集合

圆的内部可以看作是圆心的距离小于半径的点的集合

圆的外部可以看作是圆心的距离大于半径的点的集合

同圆或等圆的半径相等

到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

切线的性质定理圆的切线垂直于经过切点的半径

推论1经过圆心且垂直于切线的直线必经过切点

推论2经过切点且垂直于切线的直线必经过圆心

切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角上

圆的外切四边形的两组对边的和相等外角等于内对角

如果两个圆相切,那么切点一定在连心线上

①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

定理相交两圆的连心线垂直平分两圆的公共弦

定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

正n边形的每个内角都等于(n-2)×180°/n

定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

正n边形的面积Sn=pnrn/2p表示正n边形的周长

正三角形面积√3a/4a表示边长

如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

弧长计算公式:L=n兀R/180

扇形面积公式:S扇形=n兀R^2/360=LR/2

内公切线长=d-(R-r)外公切线长=d-(R+r)

定理一条弧所对的圆周角等于它所对的圆心角的一半

推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

圆的知识点总结 第12篇

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;
当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;
若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;
当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;
已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

数学如何预习

上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

(1)看书要动笔。(不动笔墨不读书)

①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

成数概念

一数为另一数的几成,泛指比率:应在生产组内找标准劳动力,互相比较,评成数。

表示一个数是另一个数的十分之几的数,叫做成数。

通常用在工农业生产中表示生产的增长状况。几成就是十分之几。

例如,粮食产量增产“二成”。

“二成”即是十分之二,也就是粮食产量增加了20%。

在计算成数时,设有甲、乙两数,求乙数对于甲数的比,并把比值化成纯小数,那么所得的纯小数叫做乙数对于甲数的成数。其中小数第一位叫做“成”或“分”,第二位叫做“厘”。

例如,计划粮食产量为5万斤,实际多产了1万斤,那么粮食增产的成数是1÷5=0.2,即粮食增产了二成。

成数与其他数的互化

方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数

圆的知识点总结 第13篇

数学圆的知识点

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

圆--⊙半径—r弧--⌒直径—d

扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的"基本性质与定理(27个)

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

1.圆的周长C=2πr=πd

2.圆的面积S=s=πr?

3.扇形弧长l=nπr/180

4.扇形面积S=nπr?/360=rl/2

5.圆锥侧面积S=πrl

数学学习方法

1.先看笔记后做作业。

有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。

因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。

2.做题之后加强反思。

学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。

要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说:
有钱难买回头看 。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。

我们应该看看我们做得对不对;还有什么解决办法;问题在知识体系中的地位是什么;解决办法的实质是什么;问题中的知识是否可以与我们所要求的交换,以及我们是否可以作出适当的补充或删除。有了以上五个回头看,解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。

有人认为,要想学好数学,只要多做题,功到自然成。数学要不要刷题?一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多刷题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,进行章节总结是非常重要的。

数学学习技巧

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

圆的知识点总结 第14篇

1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

2.圆心:圆任意两条对称轴的交点为圆心。

注:圆心一般符号O表示

3.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

4.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

5.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

6.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

7.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

8.周长计算公式

(1)已知直径:C=πd

(2)已知半径:C=2πr

(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)

(5)半圆的周长:1/2周长+直径(π÷2+1)

9.面积计算公式:

(1)已知半径:S=πr2

(2)已知直径:S=π(d/2)2

(3)已知周长:S=π[c÷(2π)]2

圆的知识点总结 第15篇

直线与圆:

1、直线的倾斜角 的范围是

在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.

过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

4、直线 与直线 的位置关系:

(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

5、点 到直线 的距离公式 ;

两条平行线 与 的距离是

6、圆的标准方程:
.⑵圆的一般方程:

注意能将标准方程化为一般方程

7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离② 相切③ 相交

9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

圆的知识点总结 第16篇

1.不在同一直线上的三点确定一个圆

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2  圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的`集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11.定理圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.  ①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.   ①两圆外离 d>R+r

②两圆外切 d=R+r

③两圆相交 R-rr)

④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27.正三角形面积√3a/4 a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

圆的知识点总结 第17篇

1、不在同一直线上的三点确定一个圆。

2、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1:

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2:圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形。

4、圆是定点的距离等于定长的点的集合。

5、圆的内部可以看作是圆心的距离小于半径的点的集合。

6、圆的外部可以看作是圆心的距离大于半径的点的集合。

7、同圆或等圆的半径相等。

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

12、①直线L和⊙O相交d ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r

13、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

14、切线的性质定理圆的切线垂直于经过切点的半径。

15、推论1经过圆心且垂直于切线的直线必经过切点。

16、推论2经过切点且垂直于切线的直线必经过圆心。

17、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

18、圆的外切四边形的两组对边的和相等外角等于内对角。

19、如果两个圆相切,那么切点一定在连心线上。

20、①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-rr) ④两圆内切d=R-r(R>r) ⑤两圆内含dr)

21、定理相交两圆的连心线垂直平分两圆的公共弦。

22、定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

23、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

24、正n边形的每个内角都等于(n-2)×180°/n。

25、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

26、正n边形的面积Sn=pnrn/2 p表示正n边形的周长。

27、正三角形面积√3a/4 a表示边长。

28、如果在一个顶点周围有k个正n边形的.角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

29、弧长计算公式:L=n兀R/180。

30、扇形面积公式:S扇形=n兀R^2/360=LR/2。

31、内公切线长= d-(R-r)外公切线长= d-(R+r)。

32、定理一条弧所对的圆周角等于它所对的圆心角的一半。

33、推论1同弧或等弧所对的圆周角相等;
同圆或等圆中,相等的圆周角所对的弧也相等。

34、推论2半圆(或直径)所对的圆周角是直角;
90°的圆周角所对的弦是直径。

35、弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r。

圆的知识点总结 第18篇

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

恒微文秘网 https://www.sc-bjx.com Copyright © 2015-2024 . 恒微文秘网 版权所有

Powered by 恒微文秘网 © All Rights Reserved. 备案号:蜀ICP备15013507号-1

Top